Skip to main content

Drug Interactions between Coartem and lefamulin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

artemether lefamulin

Applies to: Coartem (artemether / lumefantrine) and lefamulin

CONTRAINDICATED: When administered orally, lefamulin may significantly increase the plasma concentrations of drugs that are primarily metabolized by CYP450 3A4. Increased exposure to sensitive CYP450 3A4 substrates that can prolong the QT interval may increase the risk of ventricular arrhythmias including torsade de pointes and sudden death. Based on interaction with midazolam, a sensitive CYP450 3A4 substrate, lefamulin may be a moderate CYP450 3A4 inhibitor. When oral midazolam was administered concomitantly with and at 2 or 4 hours after administration of lefamulin tablets, mean midazolam peak plasma concentration (Cmax) and systemic exposure (AUC) increased by approximately 100% and 200%, respectively. No clinically significant differences in the pharmacokinetics of midazolam were observed when administered concomitantly with lefamulin injection.

Because lefamulin itself may cause prolongation of the QT interval, the potential for a pharmacodynamic interaction with other agents that can prolong the QT interval should also be considered. In two randomized, double-blind, double-dummy, active-controlled (moxifloxacin 400 mg once daily) studies, a concentration-dependent QTc prolongation effect of lefamulin was observed. The mean change from baseline QTcF around Tmax on day 3 or 4 was 13.6 msec for lefamulin 150 mg administered twice daily by infusion and 9.3 msec for lefamulin 600 mg administered twice daily orally, compared to 16.4 msec for moxifloxacin 400 mg administered once daily by infusion and 11.6 msec for moxifloxacin 400 mg administered once daily orally. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Concomitant use of oral (but not intravenous) lefamulin with sensitive CYP450 3A4 substrates that can prolong the QT interval is considered contraindicated. However, because lefamulin itself can also cause QT prolongation regardless of the route of administration, concomitant use with other drugs that can prolong the QT interval should generally be avoided even when lefamulin is administered intravenously.

References (1)
  1. (2019) "Product Information. Xenleta (lefamulin)." Nabriva Therapeutics US, Inc.
Major

lumefantrine lefamulin

Applies to: Coartem (artemether / lumefantrine) and lefamulin

CONTRAINDICATED: When administered orally, lefamulin may significantly increase the plasma concentrations of drugs that are primarily metabolized by CYP450 3A4. Increased exposure to sensitive CYP450 3A4 substrates that can prolong the QT interval may increase the risk of ventricular arrhythmias including torsade de pointes and sudden death. Based on interaction with midazolam, a sensitive CYP450 3A4 substrate, lefamulin may be a moderate CYP450 3A4 inhibitor. When oral midazolam was administered concomitantly with and at 2 or 4 hours after administration of lefamulin tablets, mean midazolam peak plasma concentration (Cmax) and systemic exposure (AUC) increased by approximately 100% and 200%, respectively. No clinically significant differences in the pharmacokinetics of midazolam were observed when administered concomitantly with lefamulin injection.

Because lefamulin itself may cause prolongation of the QT interval, the potential for a pharmacodynamic interaction with other agents that can prolong the QT interval should also be considered. In two randomized, double-blind, double-dummy, active-controlled (moxifloxacin 400 mg once daily) studies, a concentration-dependent QTc prolongation effect of lefamulin was observed. The mean change from baseline QTcF around Tmax on day 3 or 4 was 13.6 msec for lefamulin 150 mg administered twice daily by infusion and 9.3 msec for lefamulin 600 mg administered twice daily orally, compared to 16.4 msec for moxifloxacin 400 mg administered once daily by infusion and 11.6 msec for moxifloxacin 400 mg administered once daily orally. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Concomitant use of oral (but not intravenous) lefamulin with sensitive CYP450 3A4 substrates that can prolong the QT interval is considered contraindicated. However, because lefamulin itself can also cause QT prolongation regardless of the route of administration, concomitant use with other drugs that can prolong the QT interval should generally be avoided even when lefamulin is administered intravenously.

References (1)
  1. (2019) "Product Information. Xenleta (lefamulin)." Nabriva Therapeutics US, Inc.

Drug and food interactions

Moderate

lumefantrine food

Applies to: Coartem (artemether / lumefantrine)

GENERALLY AVOID: Coadministration with grapefruit juice may increase the plasma concentrations of artemether and lumefantrine. The mechanism is decreased clearance due to inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. High plasma levels of artemether and lumefantrine may increase the risk of QT interval prolongation and ventricular arrhythmias including torsade de pointes. In clinical trials, asymptomatic prolongation of the Fridericia-corrected QT interval (QTcF) by more than 30 msec from baseline was reported in approximately one-third of patients treated with artemether-lumefantrine, and prolongation by more than 60 msec was reported in more than 5% of patients. A few patients (0.4%) in the adult/adolescent population and no patient in the infant/children population experienced a QTcF greater than 500 msec. However, the possibility that these increases were disease-related cannot be ruled out. In a study of healthy adult volunteers, administration of the six-dose regimen of artemether-lumefantrine was associated with mean changes in QTcF from baseline of 7.45, 7.29, 6.12 and 6.84 msec at 68, 72, 96, and 108 hours after the first dose, respectively. There was a concentration-dependent increase in QTcF for lumefantrine. No subject had a greater than 30 msec increase from baseline nor an absolute increase to more than 500 msec.

ADJUST DOSING INTERVAL: Food enhances the oral absorption of artemether and lumefantrine. In healthy volunteers, the relative bioavailability of artemether increased by two- to threefold and that of lumefantrine by sixteenfold when administered after a high-fat meal as opposed to under fasted conditions.

MANAGEMENT: Patients receiving artemether-lumefantrine therapy should avoid the consumption of grapefruits and grapefruit juice. To ensure maximal oral absorption, artemether-lumefantrine should be taken with food. Inadequate food intake can increase the risk for recrudescence of malaria. Patients who are averse to food during treatment should be closely monitored and encouraged to resume normal eating as soon as food can be tolerated.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Coartem (artemether-lumefantrine)." Novartis Pharmaceuticals
Moderate

lefamulin food

Applies to: lefamulin

ADJUST DOSING INTERVAL: Food may reduce the oral bioavailability of lefamulin. When a single 600 mg oral dose of lefamulin was administered with a high-calorie, high-fat breakfast (800 to 1000 calories; approximately 50% from fat), lefamulin peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by approximately 23% and 18%, respectively.

GENERALLY AVOID: Grapefruit juice may increase the oral bioavailability of lefamulin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but pharmacokinetic data are available for the potent CYP450 3A4 inhibitor, ketoconazole. When oral lefamulin was administered with oral ketoconazole, mean lefamulin peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 58% and 165%, respectively. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to lefamulin may increase the risk of QT interval prolongation, which has been associated with ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Lefamulin tablets should be taken at least one hour before or two hours after a meal. Patients should preferably avoid or limit the consumption of grapefruit and grapefruit juice during treatment with lefamulin.

References (1)
  1. (2019) "Product Information. Xenleta (lefamulin)." Nabriva Therapeutics US, Inc.

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.