Skip to main content

Drug Interactions between clomipramine and methylene blue

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

clomiPRAMINE methylene blue

Applies to: clomipramine and methylene blue

CONTRAINDICATED: Coadministration of methylene blue with serotonergic agents may potentiate the risk of serotonin syndrome, which is a rare but serious and potentially fatal condition thought to result from hyperstimulation of brainstem 5-HT1A and 5-HT2A receptors. Current research suggests that methylene blue has structural properties similar to monoamine oxidase inhibitors (MAOIs). As such, it may enhance serotonergic effects by inhibiting serotonin metabolism. Symptoms of the serotonin syndrome may include mental status changes such as irritability, altered consciousness, confusion, hallucination, and coma; autonomic dysfunction such as tachycardia, hyperthermia, diaphoresis, shivering, blood pressure lability, and mydriasis; neuromuscular abnormalities such as hyperreflexia, myoclonus, tremor, rigidity, and ataxia; and gastrointestinal symptoms such as abdominal cramping, nausea, vomiting, and diarrhea. Serotonin syndrome has been reported when methylene blue was administered intravenously at dosages ranging from 1 to 8 mg/kg to patients exposed to drugs that interfere with serotonin reuptake. Several cases required admission to the intensive care unit. The risk of administering methylene blue intravenously at dosages less than 1 mg/kg or by non-intravenous routes (e.g., orally or by local injection) is unclear, although the potential for interaction with serotonergic agents should be considered.

MANAGEMENT: In general, the combination of intravenous methylene blue and serotonergic agents is not recommended. The product labeling for some agents with serotonergic activity consider this combination to be contraindicated; however, others provide additional warnings and precautions if their concomitant use is considered necessary. Most serotonergic psychiatric drugs should be stopped 1 to 2 weeks (i.e., 4 to 5 half-lives) prior to treatment with methylene blue if possible, while others such as fluoxetine may require discontinuation up to 5 weeks in advance due to its prolonged half-life. Treatment with serotonergic medications may be resumed 24 hours after the last dose of methylene blue. In patients receiving methylene blue who require urgent treatment of a psychiatric condition, other interventions including hospitalization should be considered. Conversely, when urgent treatment with methylene blue is required (e.g., methemoglobinemia, ifosfamide-induced encephalopathy, cyanide poisoning) in patients receiving serotonergic agents, the benefit of methylene blue treatment should be weighed against the risk of serotonin toxicity. If a decision is made to use methylene blue, the serotonergic drug must be immediately stopped, and the patient closely monitored for emergent symptoms of CNS toxicity for two weeks (five weeks if fluoxetine was taken; three weeks if vortioxetine was taken) or until 24 hours after the last dose of methylene blue, whichever comes first. Patients and/or their caregivers should be advised to seek medical attention if potential symptoms of serotonin syndrome develop. The product labeling for the concomitant medication(s) should be consulted for more specific recommendations.

References (18)
  1. Boyer EW, Shannon M (2005) "The serotonin syndrome." N Engl J Med, 352, p. 1112-20
  2. Ng BK, Cameron AJ, Liang R, Rahman H (2008) "[Serotonin syndrome following methylene blue infusion during parathyroidectomy: a case report and literature review]" Can J Anaesth, 55, p. 36-41
  3. Gillman PK (2008) "Methylene blue is a potent monoamine oxidase inhibitor." Can J Anaesth, 55, 311-2; author reply 312
  4. Khavandi A, Whitaker J, Gonna H (2008) "Serotonin toxicity precipitated by concomitant use of citalopram and methylene blue." Med J Aust, 189, p. 534-5
  5. Ng BK, Cameron AJ (2010) "The role of methylene blue in serotonin syndrome: a systematic review." Psychosomatics, 51, p. 194-200
  6. Heritier Barras AC, Walder B, Seeck M (2010) "Serotonin syndrome following Methylene Blue infusion: a rare complication of antidepressant therapy." J Neurol Neurosurg Psychiatry, 81, p. 1412-3
  7. Gillman PK (2010) "Methylene blue and serotonin toxicity: definite causal link." Psychosomatics, 51, p. 448-9
  8. Health Canada (2011) Association of serotonin toxicity with methylene blue injectable in combination with serotonin reuptake inhibitors. http://www.hc-sc.gc.ca/dhp-mps/alt_formats/pdf/medeff/advisories-avis/prof/2011/methylene_blue-bleu_nth-aah-eng.pdf
  9. FDA. U.S. Food and Drug Administration (2011) FDA Drug Safety Communication: serious CNS reactions possible when methylene blue is given to patients taking certain psychiatric medications. http://www.fda.gov/Drugs/DrugSafety/ucm263190.htm
  10. (2023) "Product Information. Escitalopram (Apo) (escitalopram)." Arrotex Pharmaceuticals Pty Ltd
  11. (2024) "Product Information. Escitalopram (escitalopram)." Milpharm Ltd
  12. (2024) "Product Information. Escitalopram Oxalate (escitalopram)." Aurobindo Pharma USA Inc
  13. (2024) "Product Information. ACH-Escitalopram (escitalopram)." Accord Healthcare
  14. (2022) "Product Information. Proveblue (methylene blue)." Clinect Pty Ltd
  15. (2024) "Product Information. Methylthioninium Chloride Proveblue (methylthioninium chloride)." Provepharm UK Ltd
  16. (2024) "Product Information. Methylene Blue (methylene blue)." BPI Labs LLC
  17. (2019) "Product Information. Methylene Blue (methylene blue)." Phebra Canada Inc.
  18. (2023) "Product Information. Zoloft (sertraline)." Viatris Specialty LLC

Drug and food interactions

Moderate

clomiPRAMINE food

Applies to: clomipramine

MONITOR: Limited data suggest that the administration of clomipramine with grapefruit juice or cranberry juice may significantly increase plasma drug concentrations of clomipramine. Clomipramine is initially demethylated by CYP450 1A2, 3A3 and 3A4 before undergoing further metabolism to 8-hydroxyclomipramine. The increase in clomipramine bioavailability may stem from inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. The precise mechanism by which cranberry juice exerts its effects is unknown, but may involve inhibition of CYP450 isoenzymes. This interaction has occasionally been exploited in attempts to improve symptomatic control of obsessive compulsive disorder.

MANAGEMENT: Patients receiving clomipramine therapy who ingest cranberry juice, grapefruits, or grapefruit juice should be monitored for adverse effects and undue fluctuations in plasma drug levels.

References (4)
  1. Oesterheld J, Kallepalli BR (1997) "Grapefruit juice and clomipramine: shifting metabolitic ratios." J Clin Psychopharmacol, 17, p. 62-3
  2. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Cerner Multum, Inc. "Australian Product Information."
Moderate

clomiPRAMINE food

Applies to: clomipramine

GENERALLY AVOID: The combination of ethanol and a tricyclic antidepressant may result in additive impairment of motor skills, especially driving skills. Also, one study has suggested that clomipramine metabolism is significantly impaired for several weeks or more following discontinuation of chronic alcohol consumption.

MANAGEMENT: Patients should be warned of this interaction and advised to limit their ethanol intake while taking tricyclic antidepressants. Monitoring for TCA toxicity (CNS depression, excessive anticholinergic effects, hypotension, arrhythmias) is recommended during alcohol withdrawal.

References (3)
  1. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
  2. Berlin I, Cournot A, Zimmer R, et al. (1990) "Evaluation and comparison of the interaction between alcohol and moclobemide or clomipramine in healthy subjects." Psychopharmacology (Berl), 100, p. 40-5
  3. Balant-Gorgia AE, Gay M, Gex-Fabry M, Balant LP (1992) "Persistent impairment of clomipramine demethylation in recently detoxified alcoholic patients." Ther Drug Monit, 14, p. 119-24

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.