Skip to main content

Drug Interactions between cisapride and MKO Melt Dose Pack

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

ketamine midazolam

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron) and MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.

MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
Major

ondansetron cisapride

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron) and cisapride

CONTRAINDICATED: Cisapride can cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Coadministration of cisapride with other drugs that can prolong the QT interval is considered contraindicated.

References (6)
  1. (2001) "Product Information. Propulsid (cisapride)." Janssen Pharmaceuticals
  2. Trinkle R (1999) "Comment: syncopal episodes associated with cisapride." Ann Pharmacother, 33, p. 251
  3. Michalets EL, Williams CR (2000) "Drug interactions with cisapride: clinical implications." Clin Pharmacokinet, 39, p. 49-75
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  6. Cerner Multum, Inc. "Australian Product Information."

Drug and food interactions

Major

cisapride food

Applies to: cisapride

CONTRAINDICATED: Coadministration with grapefruit juice may increase the plasma concentrations of cisapride. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In a study of 14 healthy volunteers, administration with 250 mL of grapefruit juice increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of cisapride (10 mg single dose) by 34% and 39%, respectively, compared to water. A second single-dose study involving 12 healthy volunteers demonstrated an increase of 68% and 51% in cisapride Cmax and AUC, respectively, compared to water. In another 10 healthy volunteers, repeated ingestion of double-strength grapefruit juice (200 mL three times a day for 2 days, then with a 10 mg dose of cisapride and at 0.5 and 1.5 hours afterwards) resulted in an 81% and 144% increase in mean cisapride Cmax and AUC, respectively, compared to water. A high degree of intersubject variability in the grapefruit juice effect was observed in all three studies, but no patient experienced any changes in heart rate, blood pressure, or QT interval. However, high plasma levels of cisapride have been associated with prolongation of the QT interval on the ECG; ventricular arrhythmias including ventricular tachycardia, ventricular fibrillation, and torsade de pointes; cardiac arrest; and sudden death.

GENERALLY AVOID: Coadministration with red wine may increase the plasma concentrations of cisapride in susceptible individuals. The exact mechanism of interaction is unknown but is believed to involve inhibition of CYP450 3A4 in the gut wall similar to grapefruit juice. In 12 healthy volunteers, administration with 250 mL of red wine (cabernet sauvignon) produced only minor and statistically insignificant changes in cisapride pharmacokinetics compared to water. However, one subject had a doubling in cisapride AUC and Cmax with red wine. The same subject also had the largest interaction with grapefruit juice, which suggests that a significant interaction may occur in certain individuals, perhaps those with a preexisting high intestinal CYP450 3A4 content.

MANAGEMENT: Patients receiving cisapride therapy should avoid the consumption of grapefruits and grapefruit juice. Because a significant interaction may occur with red wine in the occasional patient, red wine should preferably be avoided also during cisapride therapy.

References (10)
  1. (2001) "Product Information. Propulsid (cisapride)." Janssen Pharmaceuticals
  2. Bran S, Murray WA, Hirsch IB, Palmer JP (1995) "Long QT syndrome during high-dose cisapride." Arch Intern Med, 155, p. 765-8
  3. Lewin MB, Bryant RM, Fenrich AL, Grifka RG (1996) "Cisapride-induced long QT interval." J Pediatr, 128, p. 279-81
  4. Hill SL, Evangelista JK, Pizzi AM, Mobassaleh M, Fulton DR, Berul CI (1998) "Proarrhythmia associated with cisapride in children." Pediatrics, 101, p. 1053-6
  5. Gross AS, Goh YD, Addison RS, Shenfield GM (1999) "Influence of grapefruit juice on cisapride pharmacokinetics." Clin Pharmacol Ther, 65, p. 395-401
  6. Kivisto KT, Lilja TJ, Backman JT, Neuvonen PJ (1999) "Repeated consumption of grapefruit juice considerably increases plasma concentrations of cisapride." Clin Pharmacol Ther, 66, p. 448-53
  7. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  8. Desta Z, Soukhova N, Mahal SK, Flockhart DA (2000) "Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies." Drug Metab Dispos, 28, p. 789-800
  9. Michalets EL, Williams CR (2000) "Drug interactions with cisapride: clinical implications." Clin Pharmacokinet, 39, p. 49-75
  10. Offman EM, Freeman DJ, Dresser GK, Munoz C, Bend JR, Bailey DG (2001) "Red wine-cisapride interaction: Comparison with grapefruit juice." Clin Pharmacol Ther, 70, p. 17-23
Major

ketamine food

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.

MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
Moderate

ketamine food

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of ketamine. Use in combination may result in additive central nervous system (CNS) depression and/or impairment of judgment, thinking, and psychomotor skills.

GENERALLY AVOID: Coadministration of oral ketamine with grapefruit juice may significantly increase the plasma concentrations of S(+) ketamine, the dextrorotatory enantiomer of ketamine. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. When a single 0.2 mg/kg dose of S(+) ketamine was administered orally on study day 5 with grapefruit juice (200 mL three times daily for 5 days) in 12 healthy volunteers, mean S(+) ketamine peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 2.1- and 3.0-fold, respectively, compared to administration with water. In addition, the elimination half-life of S(+) ketamine increased by 24% with grapefruit juice, and the ratio of the main metabolite norketamine to ketamine was decreased by 57%. The pharmacodynamics of ketamine were also altered by grapefruit juice. Specifically, self-rated relaxation was decreased and performance in the digit symbol substitution test was increased with grapefruit juice, but other behavioral or analgesic effects were not affected.

MANAGEMENT: Patients receiving ketamine should not drink alcohol. Caution is advised when ketamine is used in patients with acute alcohol intoxication or a history of chronic alcoholism. Following anesthesia with ketamine, patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination, such as driving or operating hazardous machinery, for at least 24 hours and until they know how the medication affects them. Patients treated with oral ketamine should also avoid consumption of grapefruit and grapefruit juice during treatment. Otherwise, dosage reductions of oral ketamine should be considered.

References (4)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
  4. Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2012) "S-ketamine concentrations are greatly increased by grapefruit juice." Eur J Clin Pharmacol, 68, p. 979-86
Moderate

midazolam food

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

GENERALLY AVOID: The pharmacologic activity of oral midazolam, triazolam, and alprazolam may be increased if taken after drinking grapefruit juice. The proposed mechanism is CYP450 3A4 enzyme inhibition. In addition, acute alcohol ingestion may potentiate CNS depression and other CNS effects of many benzodiazepines. Tolerance may develop with chronic ethanol use. The mechanism may be decreased clearance of the benzodiazepines because of CYP450 hepatic enzyme inhibition. Also, it has been suggested that the cognitive deficits induced by benzodiazepines may be increased in patients who chronically consume large amounts of alcohol.

MANAGEMENT: The manufacturer recommends that grapefruit juice should not be taken with oral midazolam. Patients taking triazolam or alprazolam should be monitored for excessive sedation. Alternatively, the patient could consume orange juice which does not interact with these drugs. Patients should be advised to avoid alcohol during benzodiazepine therapy.

References (7)
  1. (2002) "Product Information. Xanax (alprazolam)." Pharmacia and Upjohn
  2. (2002) "Product Information. Valium (diazepam)." Roche Laboratories
  3. (2001) "Product Information. Halcion (triazolam)." Pharmacia and Upjohn
  4. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  5. Kupferschmidt HHT, Ha HR, Ziegler WH, Meier PJ, Krahenbuhl S (1995) "Interaction between grapefruit juice and midazolam in humans." Clin Pharmacol Ther, 58, p. 20-8
  6. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  7. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.