Skip to main content

Drug Interactions between cinoxacin and Soliqua

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

cinoxacin insulin glargine

Applies to: cinoxacin and Soliqua (insulin glargine / lixisenatide)

MONITOR CLOSELY: Quinolone antibiotics may interfere with the therapeutic effects of insulin and other antidiabetic agents. The use of quinolones has been associated with disturbances in blood glucose homeostasis possibly stemming from effects on pancreatic beta cell ATP-sensitive potassium channels that regulate insulin secretion. Both hyperglycemia and hypoglycemia have been reported, usually in diabetic patients receiving concomitant treatment with an oral hypoglycemic agent or insulin. Although hyperglycemia is significantly more common and infection itself may be an underlying risk factor, hypoglycemia may cause greater morbidity and mortality. An internal safety review conducted by the U.S. Food and Drug Administration (FDA) identified at least 67 reports of severe hypoglycemia associated with quinolone use resulting in coma, death, or permanent and disabling injuries, primarily in elderly and diabetic patients with renal impairment and/or complicated infections. This is in addition to the numerous cases that have been reported for gatifloxacin, which led to its withdrawal from the U.S. market in 2008. Of the five quinolones that the FDA reviewed, levofloxacin had the most cases (44), followed by ciprofloxacin (12), moxifloxacin (9), ofloxacin (2), and gemifloxacin (0). Other quinolones such as nalidixic acid and norfloxacin, as well as some others that have never been marketed or are no longer marketed such as clinafloxacin and temafloxacin, have also been associated with dysglycemia, thus it is generally believed to be a class effect, albeit with varying risks amongst the individual agents. Available data also seem to indicate different time frames for the development of hypo- and hyperglycemia, with the former generally occurring within 1 to 3 days following quinolone initiation and the latter within 4 to 10 days later. Pharmacokinetically, ciprofloxacin is also a known inhibitor of CYP450 1A2 and 3A4 and may inhibit the hepatic metabolism of glyburide. Hypoglycemia in association with elevated serum glyburide level occurred in a patient after one week of ciprofloxacin therapy.

MANAGEMENT: Blood glucose should be closely monitored whenever quinolones are prescribed to diabetic patients, especially if they are elderly, have renal impairment, or are severely ill. Due to the risk of profound and potentially life-threatening hypoglycemia, particular caution is advised during concomitant use of insulin and insulin secretagogues (e.g., sulfonylureas, meglitinides). Patients should also be apprised of the increased risk of hypoglycemia and be alert to potential signs and symptoms such as headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, palpitation, and tachycardia. If hypoglycemia occurs, patients should initiate appropriate remedial therapy immediately, discontinue the quinolone, and contact their physician. Alternative antibiotics may need to be considered.

References

  1. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  2. (2001) "Product Information. Noroxin (norfloxacin)." Merck & Co., Inc
  3. (2001) "Product Information. Floxin (ofloxacin)." Ortho McNeil Pharmaceutical
  4. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  5. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  6. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  7. Edwards DJ, Bowles SK, Svensson CK, Rybak MJ (1988) "Inhibition of drug metabolism by quinolone antibiotics." Clin Pharmacokinet, 15, p. 194-204
  8. (2001) "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb
  9. Gajjar DA, LaCreta FP, Kollia GD, et al. (2000) "Effect of multiple-dose gatifloxacin or ciprofloxacin on glucose homeostasis and insulin production in patients with noninsulin-dependent diabetes mellitus maintained with diet and exercise." Pharmacotherapy, 20 (6 Pt 2), s76-86
  10. Roberge RJ, Kaplan R, Frank R, Fore C (2000) "Glyburide-ciprofloxacin interaction with resistant hypoglycemia." Ann Emerg Med, 36, p. 160-3
  11. Rubinstein E (2001) "History of quinolones and their side effects." Chemotherapy, 47 Suppl 3, p. 3-8
  12. Menzies DJ, Dorsainvil PA, Cunha BA, Johnson DH (2002) "Severe and persistent hypoglycemia due to gatifloxacin interaction with oral hypoglycemic agents." Am J Med, 113, p. 232-4
  13. Baker SE, Hangii MC (2002) "Possible gatifloxacin-induced hypoglycemia." Ann Pharmacother, 36, p. 1722-6
  14. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  15. (2003) "Hypoglycemia and hyperglycemia with fluoroquinolones." Med Lett Drugs Ther, 45, p. 64
  16. Donaldson AR, Vandiver JR, Finch CK (2004) "Possible gatifloxacin-induced hyperglycemia." Ann Pharmacother, 38, p. 602-5
  17. LeBlanc M, Belanger C, Cossette P (2004) "Severe and resistant hypoglycemia associated with concomitant gatifloxacin and glyburide therapy." Pharmacotherapy, 24, p. 926-31
  18. Biggs WS (2004) "Hypoglycemia and hyperglycemia associated with gatifloxacin use in elderly patients." J Am Board Fam Pract, 16, p. 455-7
  19. Gavin JR 3rd, Kubin R, Choudhri S, et al. (2004) "Moxifloxacin and glucose homeostasis: a pooled-analysis of the evidence from clinical and postmarketing studies." Drug Saf, 27, p. 671-86
  20. Saraya A, Yokokura M, Gonoi T, Seino S (2004) "Effects of fluoroquinolones on insulin secretion and beta-cell ATP-sensitive K(+) channels." Eur J Pharmacol, 497, p. 111-7
  21. Lin G, Hays DP, Spillane L (2004) "Refractory hypoglycemia from ciprofloxacin and glyburide interaction." J Toxicol Clin Toxicol, 42, p. 295-7
  22. Friedrich LV, Dougherty R (2004) "Fatal hypoglycemia associated with levofloxacin." Pharmacotherapy, 24, p. 1807-12
  23. Khovidhunkit W, Sunthornyothin S (2004) "Hypoglycemia, hyperglycemia, and gatifloxacin." Ann Intern Med, 141, p. 969
  24. Happe MR, Mulhall BP, Maydonovitch CL, Holtzmuller KC (2004) "Gatifloxacin-induced hyperglycemia." Ann Intern Med, 141, p. 968-9
  25. Greenberg AL, Decerbo M, Fan J (2005) "Gatifloxacin therapy associated with hypoglycemia." Clin Infect Dis, 40, p. 1210-1
  26. Blommel AL, Lutes RA (2005) "Severe hyperglycemia during renally adjusted gatifloxacin therapy." Ann Pharmacother, 39, p. 1349-52
  27. Brogan SE, Cahalan MK (2005) "Gatifloxacin as a possible cause of serious postoperative hypoglycemia." Anesth Analg, 101, p. 635-6
  28. Graumlich JF, Habis S, Avelino RR, et al. (2005) "Hypoglycemia in inpatients after gatifloxacin or levofloxacin therapy: nested case-control study." Pharmacotherapy, 25, p. 1296-302
  29. Frothingham R (2005) "Glucose homeostasis abnormalities associated with use of gatifloxacin." Clin Infect Dis, 41, p. 1269-76
  30. Bhasin R, Arce FC, Pasmantier R (2005) "Hypoglycemia associated with the use of gatifloxacin." Am J Med Sci, 330, p. 250-3
  31. McMorran M, Morrison H, Letourneau G (2006) Gatifloxacin (Tequin): hypoglycemia and hyperglycemia. http://www.hc-sc.gc.ca/dhp-mps/medeff/bulletin/carn-bcei_v13n3_e.html#1
  32. Park-Wyllie LY, Juurlink DN, Kopp A, et al. (2006) "Outpatient gatifloxacin therapy and dysglycemia in older adults." N Engl J Med, 354, p. 1352-61
  33. Wang S, Rizvi AA (2006) "Levofloxacin-induced hypoglycemia in a nondiabetic patient." Am J Med Sci, 331, p. 334-5
  34. Kanbay M, Aydogan T, Bozalan R, et al. (2006) "A rare but serious side effect of levofloxacin: hypoglycemia in a geriatric patient." Diabetes Care, 29, p. 1716-7
  35. Zvonar R (2006) "Gatifloxacin-induced dysglycemia." Am J Health Syst Pharm, 63, p. 2087-2092
  36. Zhanel GG, Fontaine S, Adam H, et al. (2006) "A Review of New Fluoroquinolones : Focus on their Use in Respiratory Tract Infections." Treat Respir Med, 5, p. 437-465
  37. Yip C, Lee AJ (2006) "Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature." Clin Ther, 28, p. 1857-66
  38. Tomita T, Onishi M, Sato E, Kimura Y, Kihira K (2007) "Gatifloxacin induces augmented insulin release and intracellular insulin." Biol Pharm Bull, 30, p. 644-7
  39. Kelesidis T, Canseco E (2010) "Quinolone-induced hypoglycemia: a life-threatening but potentially reversible side effect." Am J Med, 123, e5-6
  40. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
View all 40 references

Switch to consumer interaction data

Moderate

cinoxacin lixisenatide

Applies to: cinoxacin and Soliqua (insulin glargine / lixisenatide)

MONITOR: Quinolone antibiotics may interfere with the therapeutic effects of insulin and other antidiabetic agents. The use of quinolones has been associated with disturbances in blood glucose homeostasis possibly stemming from effects on pancreatic beta cell ATP-sensitive potassium channels that regulate insulin secretion. Both hyperglycemia and hypoglycemia have been reported, usually in diabetic patients receiving concomitant treatment with an oral hypoglycemic agent (e.g., sulfonylurea) or insulin. Although hyperglycemia is significantly more common and infection itself may be an underlying risk factor, hypoglycemia may cause greater morbidity and mortality. An internal safety review conducted by the U.S. Food and Drug Administration (FDA) identified at least 67 reports of severe hypoglycemia associated with quinolone use resulting in coma, death, or permanent and disabling injuries, primarily in elderly and diabetic patients with renal impairment and/or complicated infections. This is in addition to the numerous cases that have been reported for gatifloxacin, which led to its withdrawal from the U.S. market in 2008. Of the five quinolones that the FDA reviewed, levofloxacin had the most cases (44), followed by ciprofloxacin (12), moxifloxacin (9), ofloxacin (2), and gemifloxacin (0). Other quinolones such as nalidixic acid and norfloxacin, as well as some others that have never been marketed or are no longer marketed such as clinafloxacin and temafloxacin, have also been associated with dysglycemia, thus it is generally believed to be a class effect, albeit with varying risks amongst the individual agents. Available data also seem to indicate different time frames for the development of hypo- and hyperglycemia, with the former generally occurring within 1 to 3 days following quinolone initiation and the latter within 4 to 10 days later.

MANAGEMENT: Blood glucose should be closely monitored whenever quinolones are prescribed to diabetic patients, especially if they are elderly, have renal impairment, or are severely ill. Patients should be apprised of the increased risk of dysglycemia and be particularly alert to potential signs and symptoms of hypoglycemia such as headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, palpitation, and tachycardia. If hypoglycemia occurs, patients should initiate appropriate remedial therapy immediately, discontinue the quinolone, and contact their physician. Alternative antibiotics may need to be considered.

References

  1. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  2. (2001) "Product Information. Noroxin (norfloxacin)." Merck & Co., Inc
  3. (2001) "Product Information. Floxin (ofloxacin)." Ortho McNeil Pharmaceutical
  4. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  5. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  6. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  7. Edwards DJ, Bowles SK, Svensson CK, Rybak MJ (1988) "Inhibition of drug metabolism by quinolone antibiotics." Clin Pharmacokinet, 15, p. 194-204
  8. (2001) "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb
  9. Gajjar DA, LaCreta FP, Kollia GD, et al. (2000) "Effect of multiple-dose gatifloxacin or ciprofloxacin on glucose homeostasis and insulin production in patients with noninsulin-dependent diabetes mellitus maintained with diet and exercise." Pharmacotherapy, 20 (6 Pt 2), s76-86
  10. Roberge RJ, Kaplan R, Frank R, Fore C (2000) "Glyburide-ciprofloxacin interaction with resistant hypoglycemia." Ann Emerg Med, 36, p. 160-3
  11. Rubinstein E (2001) "History of quinolones and their side effects." Chemotherapy, 47 Suppl 3, p. 3-8
  12. Menzies DJ, Dorsainvil PA, Cunha BA, Johnson DH (2002) "Severe and persistent hypoglycemia due to gatifloxacin interaction with oral hypoglycemic agents." Am J Med, 113, p. 232-4
  13. Baker SE, Hangii MC (2002) "Possible gatifloxacin-induced hypoglycemia." Ann Pharmacother, 36, p. 1722-6
  14. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  15. (2003) "Hypoglycemia and hyperglycemia with fluoroquinolones." Med Lett Drugs Ther, 45, p. 64
  16. Donaldson AR, Vandiver JR, Finch CK (2004) "Possible gatifloxacin-induced hyperglycemia." Ann Pharmacother, 38, p. 602-5
  17. LeBlanc M, Belanger C, Cossette P (2004) "Severe and resistant hypoglycemia associated with concomitant gatifloxacin and glyburide therapy." Pharmacotherapy, 24, p. 926-31
  18. Biggs WS (2004) "Hypoglycemia and hyperglycemia associated with gatifloxacin use in elderly patients." J Am Board Fam Pract, 16, p. 455-7
  19. Gavin JR 3rd, Kubin R, Choudhri S, et al. (2004) "Moxifloxacin and glucose homeostasis: a pooled-analysis of the evidence from clinical and postmarketing studies." Drug Saf, 27, p. 671-86
  20. Saraya A, Yokokura M, Gonoi T, Seino S (2004) "Effects of fluoroquinolones on insulin secretion and beta-cell ATP-sensitive K(+) channels." Eur J Pharmacol, 497, p. 111-7
  21. Lin G, Hays DP, Spillane L (2004) "Refractory hypoglycemia from ciprofloxacin and glyburide interaction." J Toxicol Clin Toxicol, 42, p. 295-7
  22. Friedrich LV, Dougherty R (2004) "Fatal hypoglycemia associated with levofloxacin." Pharmacotherapy, 24, p. 1807-12
  23. Khovidhunkit W, Sunthornyothin S (2004) "Hypoglycemia, hyperglycemia, and gatifloxacin." Ann Intern Med, 141, p. 969
  24. Happe MR, Mulhall BP, Maydonovitch CL, Holtzmuller KC (2004) "Gatifloxacin-induced hyperglycemia." Ann Intern Med, 141, p. 968-9
  25. Greenberg AL, Decerbo M, Fan J (2005) "Gatifloxacin therapy associated with hypoglycemia." Clin Infect Dis, 40, p. 1210-1
  26. Blommel AL, Lutes RA (2005) "Severe hyperglycemia during renally adjusted gatifloxacin therapy." Ann Pharmacother, 39, p. 1349-52
  27. Brogan SE, Cahalan MK (2005) "Gatifloxacin as a possible cause of serious postoperative hypoglycemia." Anesth Analg, 101, p. 635-6
  28. Graumlich JF, Habis S, Avelino RR, et al. (2005) "Hypoglycemia in inpatients after gatifloxacin or levofloxacin therapy: nested case-control study." Pharmacotherapy, 25, p. 1296-302
  29. Frothingham R (2005) "Glucose homeostasis abnormalities associated with use of gatifloxacin." Clin Infect Dis, 41, p. 1269-76
  30. Bhasin R, Arce FC, Pasmantier R (2005) "Hypoglycemia associated with the use of gatifloxacin." Am J Med Sci, 330, p. 250-3
  31. McMorran M, Morrison H, Letourneau G (2006) Gatifloxacin (Tequin): hypoglycemia and hyperglycemia. http://www.hc-sc.gc.ca/dhp-mps/medeff/bulletin/carn-bcei_v13n3_e.html#1
  32. Park-Wyllie LY, Juurlink DN, Kopp A, et al. (2006) "Outpatient gatifloxacin therapy and dysglycemia in older adults." N Engl J Med, 354, p. 1352-61
  33. Wang S, Rizvi AA (2006) "Levofloxacin-induced hypoglycemia in a nondiabetic patient." Am J Med Sci, 331, p. 334-5
  34. Kanbay M, Aydogan T, Bozalan R, et al. (2006) "A rare but serious side effect of levofloxacin: hypoglycemia in a geriatric patient." Diabetes Care, 29, p. 1716-7
  35. Zvonar R (2006) "Gatifloxacin-induced dysglycemia." Am J Health Syst Pharm, 63, p. 2087-2092
  36. Zhanel GG, Fontaine S, Adam H, et al. (2006) "A Review of New Fluoroquinolones : Focus on their Use in Respiratory Tract Infections." Treat Respir Med, 5, p. 437-465
  37. Yip C, Lee AJ (2006) "Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature." Clin Ther, 28, p. 1857-66
  38. Tomita T, Onishi M, Sato E, Kimura Y, Kihira K (2007) "Gatifloxacin induces augmented insulin release and intracellular insulin." Biol Pharm Bull, 30, p. 644-7
  39. Kelesidis T, Canseco E (2010) "Quinolone-induced hypoglycemia: a life-threatening but potentially reversible side effect." Am J Med, 123, e5-6
  40. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
  41. (2021) "Product Information. Ciprofloxacin Hydrochloride (ciprofloxacin)." Aurobindo Pharma USA Inc
  42. FDA. Food and Drug Admnistration (2023) FDA reinforces safety information about serious low blood sugar levels and mental health side effects with fluoroquinolone antibiotics; requires label changes. https://www.fda.gov/drugs/drug-safety-and-availability/fda-reinforces-safety-information-about
View all 42 references

Switch to consumer interaction data

Moderate

insulin glargine lixisenatide

Applies to: Soliqua (insulin glargine / lixisenatide) and Soliqua (insulin glargine / lixisenatide)

ADJUST DOSE: Coadministration of a glucagon-like peptide-1 (GLP-1) receptor agonist or dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist with insulin may potentiate the risk of hypoglycemia. GLP-1 receptor agonists and dual GLP-1 and GIP receptor agonists lower blood glucose by stimulating insulin secretion and lowering glucagon secretion. An increased incidence of hypoglycemia has been observed in patients treated with a combination of basal insulin and GLP-1 or dual GLP-1 and GIP receptor agonists. Additionally, patients with diabetic retinopathy who received treatment with basal insulin and subcutaneous semaglutide in one clinical trial had an increased risk of developing diabetic retinopathy complications. Rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy, but other mechanisms cannot be excluded. The safety and efficacy of GLP-1 or dual GLP-1 and GIP receptor agonists in combination with non-basal insulin have not been established.

MANAGEMENT: When a GLP-1 receptor agonist or dual GLP-1 and GIP receptor agonist is used as add-on therapy to basal insulin, a lower dosage of insulin may be required. Some clinical trials have reduced the basal insulin dose by 20% in patients with a baseline hemoglobin A1c <= 8% when a GLP-1 or dual GLP-1 and GIP receptor agonist was initiated. Because diabetic ketoacidosis has been reported in insulin-dependent patients after rapid discontinuation or dose reduction of insulin, a stepwise approach to insulin dose reduction is recommended and blood glucose levels should be closely monitored. Patients should receive guidance on the recognition and management of hypoglycemia as well as precautions to take to avoid hypoglycemia, particularly while driving or operating hazardous machinery. Those with diabetic retinopathy should also be monitored for progression of the condition or complications. A rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy.

References

  1. (2005) "Product Information. Byetta (exenatide)." Amylin Pharmaceuticals Inc
  2. (2010) "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc
  3. (2014) "Product Information. Tanzeum (albiglutide)." GlaxoSmithKline
  4. (2014) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company
  5. (2016) "Product Information. Adlyxin (lixisenatide)." sanofi-aventis
  6. (2022) "Product Information. Ozempic (1 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc
  7. (2022) "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company
  8. (2022) "Product Information. Wegovy (2.4 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc, SUPPL-3
  9. (2023) "Product Information. Bydureon BCise (exenatide)." AstraZeneca UK Ltd
  10. (2022) "Product Information. Byetta Prefilled Pen (exenatide)." Astra-Zeneca Pharmaceuticals
  11. (2014) "Product Information. Eperzan (albiglutide)." GlaxoSmithKline UK Ltd
  12. (2023) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company Ltd
  13. (2022) "Product Information. Saxenda (liraglutide)." Novo Nordisk Ltd
  14. (2022) "Product Information. Victoza (liraglutide)." Novo Nordisk Ltd
  15. (2022) "Product Information. Lyxumia (lixisenatide)." Sanofi
  16. (2023) "Product Information. Ozempic (semaglutide)." Novo Nordisk Ltd
View all 16 references

Switch to consumer interaction data

Drug and food interactions

Moderate

insulin glargine food

Applies to: Soliqua (insulin glargine / lixisenatide)

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO (1981) "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand, 656, p. 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. (1983) "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol, 24, p. 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. (1983) "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia, 24, p. 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A (1987) "Interaction of ethanol and glipizide in humans." Diabetes Care, 10, p. 683-6
  5. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  6. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM (1981) "The pharmacology of sulfonylureas." Am J Med, 70, p. 361-72
  9. (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 10 references

Switch to consumer interaction data

Moderate

lixisenatide food

Applies to: Soliqua (insulin glargine / lixisenatide)

ADJUST DOSING INTERVAL: Lixisenatide slows gastric emptying, which may impact the absorption of concomitantly administered oral medications. The interaction has been studied with various medications, which demonstrated primarily an effect on the rate rather than the overall extent of absorption.

Acetaminophen: When acetaminophen 1000 mg was administered 1 hour and 4 hours after lixisenatide 10 mcg injection, acetaminophen peak plasma concentration (Cmax) was decreased by 29% and 31%, respectively; and median time to peak plasma concentration (Tmax) was delayed by 2 hours and 1.75 hours, respectively. The Cmax and Tmax of acetaminophen were not significantly altered when acetaminophen was given one hour before lixisenatide injection, and systemic exposure (AUC) was not affected whether administered before or after lixisenatide administration. Based on these results, no dose adjustment for acetaminophen is required; however, it may be advisable to take acetaminophen at least one hour before lixisenatide if a rapid onset of action is required.

Oral Contraceptives: When an oral contraceptive containing ethinyl estradiol 0.03 mg and levonorgestrel 0.15 mg was administered 1 hour and 4 hours after lixisenatide 10 mcg injection, ethinyl estradiol Cmax was decreased by 52% and 39%, respectively, while levonorgestrel Cmax was decreased by 46% and 20%, respectively. Median Tmax values were delayed by 1 to 3 hours, but overall exposure (AUC) and mean terminal half-life (T1/2) of ethinyl estradiol and levonorgestrel were not significantly altered. Administration of the oral contraceptive 1 hour before or 11 hours after lixisenatide had no effect on any of the measured pharmacokinetic parameters of either ethinyl estradiol or levonorgestrel. Based on these results, no dose adjustment for oral contraceptives is required; however, some authorities recommend that oral contraceptives be administered at least 1 hour before or 11 hours after lixisenatide.

Atorvastatin: When atorvastatin 40 mg and lixisenatide 20 mcg were coadministered in the morning for 6 days, atorvastatin Cmax was decreased by 31% and Tmax was delayed by 3.25 hours, but AUC was not affected. When atorvastatin was administered in the evening and lixisenatide in the morning, the AUC and Cmax of atorvastatin were increased by 27% and 66%, respectively, but there was no change in Tmax. Based on these results, no dose adjustment for atorvastatin is required; however, some authorities recommend that atorvastatin be administered at least 1 hour before lixisenatide.

Warfarin: When warfarin 25 mg was coadministered with repeated dosing of lixisenatide 20 mcg, warfarin Cmax was decreased by 19% and Tmax was delayed by 7 hours, but there were no effects on AUC or International Normalized Ratio (INR). Based on these results, no dose adjustment for warfarin is required; however, closer monitoring of INR may be appropriate following initiation or discontinuation of lixisenatide treatment.

Digoxin: When digoxin 0.25 mg and lixisenatide 20 mcg were coadministered at steady state, digoxin Cmax was decreased by 26% and Tmax was delayed by 1.5 hours, but AUC was not affected. Based on these results, no dose adjustment for digoxin is required.

Ramipril: When ramipril 5 mg and lixisenatide 20 mcg were coadministered for 6 days, ramipril Cmax was decreased by 63% and AUC was increased by 21%, while Cmax and AUC of the active metabolite (ramiprilat) were not affected. The Tmax values of ramipril and ramiprilat were delayed by approximately 2.5 hours. Based on these results, no dose adjustment for ramipril is required.

MANAGEMENT: Caution is advised during concomitant use of lixisenatide with oral medications that have a narrow therapeutic index or that require careful clinical monitoring. These medications should be administered on a consistent schedule relative to lixisenatide, and blood levels and/or pharmacologic effects should be closely monitored. In addition, if they are to be administered with food, patients should be advised to take them with a meal or snack when lixisenatide is not administered. Oral medications that are particularly dependent on threshold concentrations for efficacy, such as antibiotics, or medications for which a delay in effect is undesirable, such as acetaminophen, should be administered at least 1 hour before lixisenatide. Gastro-resistant formulations containing substances sensitive to stomach degradation should be administered 1 hour before or 4 hours after lixisenatide. Patients taking oral contraceptives should be advised to take them at least 1 hour before or 11 hours after lixisenatide.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."

Switch to consumer interaction data

Moderate

cinoxacin food

Applies to: cinoxacin

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of quinolone antibiotics. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of quinolones by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract. The bioavailability of ciprofloxacin has been reported to decrease by as much as 90% when administered with antacids containing aluminum or magnesium hydroxide.

MANAGEMENT: When coadministration cannot be avoided, quinolone antibiotics should be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation-containing products to minimize the potential for interaction. When coadministered with Suprep Bowel Prep (magnesium/potassium/sodium sulfates), the manufacturer recommends administering fluoroquinolone antibiotics at least 2 hours before and not less than 6 hours after Suprep Bowel Prep to avoid chelation with magnesium. Please consult individual product labeling for specific recommendations.

References

  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
  5. Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
  6. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
  7. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
  8. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
  9. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
  10. Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
  11. Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
  12. Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
  13. Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
  14. Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
  15. Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
  16. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
  17. Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
  18. Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
  19. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  20. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  21. (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
  22. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  23. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
  24. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
  25. Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
  26. Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
  27. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
  28. Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
  29. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
  30. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  31. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
  32. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
View all 32 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.