Drug Interactions between cinoxacin and dostarlimab
This report displays the potential drug interactions for the following 2 drugs:
- cinoxacin
- dostarlimab
Interactions between your drugs
cinoxacin dostarlimab
Applies to: cinoxacin and dostarlimab
MONITOR: Use of systemic antibiotics during or close to therapy with immune checkpoint inhibitors (ICIs) such as anti-cytotoxic T-lymphocyte-associated protein (CTLA)-4 monoclonal antibodies and/or inhibitors of programmed cell death-1 (PD-1)/programmed death ligand-1 (PD-L1) may result in reduced clinical efficacy of the ICI. The exact mechanism of this interaction has not been fully characterized, but may be related to alterations in the gut microbiota by the systemic antibiotic, potentially resulting in immune dysregulation and a decreased response to the ICI. A meta-analysis of 6 studies involving nivolumab for the treatment of advanced or metastatic non-small cell lung cancer (NSCLC) found that the median progression-free survival (PFS) and overall survival (OS) were reduced by 1.6 months and 8.8 months, respectively, in patients who were exposed to systemic antibiotics before, during, or after nivolumab therapy. Similarly, a single-site retrospective review of patients (n=291) with advanced cancer (melanoma, NSCLC, or renal cell carcinoma) treated with ICI(s) also revealed poorer clinical outcomes associated with the receipt of systemic antibiotics. This study divided patients into 3 groups: no antibiotics, single course of antibiotics, or cumulative courses of antibiotics (i.e., administration of concurrent or successive antibiotics for >7 days) during the 2 weeks prior to and 6 weeks after ICI treatment. The median PFS (6.3 months vs. 3.7 months vs. 2.8 months, respectively) and median OS (21.7 months vs. 17.7 months vs. 6.3 months, respectively) decreased as the antibiotic use increased, though the difference between no antibiotic use and cumulative courses of antibiotics was the only difference determined to be clinically significant. Additionally, a different retrospective analysis of patients (n=635) with advanced cancer treated with ICIs found that antibiotic use was associated with significantly shorter median OS (8 months vs. 23 months), median PFS (4 months vs. 7 months), as well as a reduction in tumor response (57% vs. 71%) when compared to patients who did not receive antibiotics. In contrast, a retrospective study of patients (n=302) with stage IV NSCLC treated with first-line chemo-immunotherapy combinations (i.e., ICI and cytotoxic chemotherapy) had similar OS, PFS, and objective response rate between those who did and did not receive antibiotics during the 30 days prior to initiating an ICI. The receipt of concurrent systemic antibiotics in this patient population was likewise not associated with changes in OS nor PFS.
MANAGEMENT: Until more information is available, caution and clinical monitoring for reduced efficacy of immune checkpoint inhibitors (ICIs) are advised if systemic antibiotics are indicated prior to, concurrently with, or after an ICI. Antibiotic use should be limited to clinically appropriate indications and durations. Clinicians should consult relevant literature, local and national treatment guidelines, and package labeling for further guidance.
References (6)
- Kostine M, Mauric E, Tison A, et al. (2021) "Baseline co-medications may alter the anti-tumoural effect of checkpoint inhibitors as well as the risk of immune-related adverse events." Eur J Cancer, 157, p. 474-84
- Huo GW, Zuo R, Song Y, et al. (2021) "Effect of antibiotic use on the efficacy of nivolumab in the treatment of advanced/metastatic non-small cell lung cancer: a meta-analysis." Open Med (Wars), 16, p. 728-36
- Tinsley N, Zhou C, Tan G, et al. (2020) "Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer." Oncologist, 25, p. 55-63
- Cortellini A, Ricciuti B, Facchinetti F, et al. (2021) "Antibiotic-exposed patients with non-small-cell lung cancer preserve efficacy outcomes following first-line chemo-immunotherapy." Ann Oncol, 32, p. 1391-9
- Hakozaki T, richard c, Elkrief A, et al. (2020) "The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer." Cancer Immunol Res, 8, p. 1243-50
- Wu HJ, Wu E (2012) "The role of gut microbiota in immune homeostasis and autoimmunity." Gut Microbes, 3, p. 4-14
Drug and food interactions
cinoxacin food
Applies to: cinoxacin
ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of quinolone antibiotics. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of quinolones by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract. The bioavailability of ciprofloxacin has been reported to decrease by as much as 90% when administered with antacids containing aluminum or magnesium hydroxide.
MANAGEMENT: When coadministration cannot be avoided, quinolone antibiotics should be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation-containing products to minimize the potential for interaction. When coadministered with Suprep Bowel Prep (magnesium/potassium/sodium sulfates), the manufacturer recommends administering fluoroquinolone antibiotics at least 2 hours before and not less than 6 hours after Suprep Bowel Prep to avoid chelation with magnesium. Please consult individual product labeling for specific recommendations.
References (32)
- Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
- Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
- Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
- Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
- Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
- Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
- Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
- Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
- Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
- Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
- Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
- Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
- Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
- Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
- Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
- Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
- Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
- Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
- (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
- (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
- (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
- (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
- Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
- Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
- Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
- Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
- Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
- Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
- Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
- (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
- (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
- (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.