Skip to main content

Drug Interactions between chloroquine and MKO Melt Dose Pack

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

chloroquine ondansetron

Applies to: chloroquine and MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

GENERALLY AVOID: Hydroxychloroquine (HCQ) can cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such advanced age, congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s). In a retrospective study of electronic health records analyzing QTc prolongation risk in patients on HCQ alone or with other QT-prolonging drugs, a statistically significant QTc interval increase of 18 ms was observed in the HCQ monotherapy group. No significant QTc increase was found in patients taking HCQ with the evaluated QT-prolonging medications. However, this result may have been influenced by factors such as varying patient sensitivity to QT-prolonging drugs across treatment sites, and differences in HCQ exposure duration prior to QTc measurement in combination therapy cases. QT prolongation has also been reported with chloroquine, with an increased risk reported at higher doses.

MANAGEMENT: Coadministration of hydroxychloroquine or chloroquine with other drugs that can prolong the QT interval should generally be avoided, particularly in patients with baseline QT prolongation (e.g., QTc >=500 msec) or congenital long QT syndrome. Close monitoring of QTc interval, electrolyte levels, and renal and hepatic function is recommended if concomitant use is required, and benefits are anticipated to outweigh the risks. Electrolyte abnormalities should be corrected prior to initiating treatment with hydroxychloroquine. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope. Because both hydroxychloroquine and chloroquine are eliminated slowly from the body (e.g., terminal half-life of hydroxychloroquine is 40-50 days), potential drug interactions may persist for several weeks to months after their discontinuation.

References (28)
  1. (2022) "Product Information. Plaquenil (hydroxychloroquine)." Apothecon Inc
  2. (2005) "Product Information. Chloroquine Phosphate (chloroquine)." West Ward Pharmaceutical Corporation
  3. (2017) "Product Information. Hydroxychloroquine Sulfate (hydroxychloroquine)." Prasco Laboratories
  4. US Food and Drug Administration (2020) Hydroxychloroquine or Chloroquine for COVID-19: Drug Safety Communication - FDA Cautions Against Use Outside of the Hospital Setting or a Clinical Trial Due to Risk of Heart Rhythm Problems. https://www.fda.gov/safety/medical-product-safety-information/h
  5. US Food and Drug Administration (2020) FACT SHEET FOR HEALTH CARE PROVIDERS EMERGENCY USE AUTHORIZATION (EUA) OF HYDROXYCHLOROQUINE SULFATE SUPPLIED FROM THE STRATEGIC NATIONAL STOCKPILE FOR TREATMENT OF COVID-19 IN CERTAIN HOSPITALIZED PATIENTS. https://www.fda.gov/media/136537/download
  6. US Food and Drug Administration (2020) FACT SHEET FOR HEALTH CARE PROVIDERS EMERGENCY USE AUTHORIZATION (EUA) OF CHLOROQUINE PHOSPHATE SUPPLIED FROM THE STRATEGIC NATIONAL STOCKPILE FOR TREATMENT OF COVID-19 IN CERTAIN HOSPITALIZED PATIENTS. https://www.fda.gov/media/136535/download
  7. National Institutes of Health (NIH) (2020) Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. https://covid19treatmentguidelines.nih.gov/
  8. Mercuro NJ, Yen CF, Shim DJ, et al. (2020) "Risk of QT interval prolongation associated with the use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19)" JAMA Cardiol, May 1:e201834, epub ahead of print
  9. Bonow RO, Hernandez AF, Turakhia M (2020) "Hydroxychloroquine, coronavirus disease 2019, and QT prolongation." JAMA Cardiol, May 1, epub ahead of print
  10. Bessiere F, Roccia H, Deliniere A, et al. (2020) "Assessment of QT intervals in a case series of patients with coronavirus disease 2019 (COVID-19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intensive care unit." JAMA Cardiol, May 1, epub ahead of print
  11. Saleh M, Gabriels J, ChangD, et al. (2020) "The effect of chloroquine, hydroxychloroquine and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection." Circ Arrhythm Electrophysiol, Apr 29, epub ahead of print
  12. Javelot H, El-Hage W, Meyer G, Becker G, Michel B, Hingray C (2020) "COVID-19 and (hydroxy)chloroquine-azithromycin combination: should we take the risk for our patients?" Br J Clin Pharmacol, Apr 29, epub ahead of print
  13. Sacher F, Fauchier L, Boveda S, et al. (2020) "Use of drugs with potential cardiac effect in the setting of SARS-CoV-2 infection." Arch Cardiovasc Dis, Apr 24, epub ahead of print
  14. Smit C, Peeters MYM, van den Anker JN, Knibbe CAJ (2020) "Chloroquine for SARS-CoV-2: Implications of its unique pharmacokinetic and safety properties." Clin Pharmacokinet, Ar 18, epub ahead of print
  15. Roden DM, Harrington RA, Poppas A, Russo AM (2020) "Considerations for drug interactions on QTc in exploratory COVID-19 (Coroanvirus disease 2019) treatment." Heart Rhythm, Apr 14, epub ahead of print
  16. Sapp JL, Alqarawi W, MacIntyre CJ, et al. (2020) "Guidance on minimizing risk of drug-induced ventricular arrhythmia during treatment of COVID-19: A statement from the Canadian Heart Rhythm Society." Can J Cardiol, Apr 8, epub ahead of print
  17. Kapoor A, Pandurangi U, Arora V, et al. (2020) "Cardiovascular risks of hydroxychloroquine in treatment and prophylaxis of COVID-19 patients: A scientific statement from the Indian Heart Rhythm Society." Indian Pacing Electorphysiol J, Apr 8, epub ahead of print
  18. Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ (2020) "Urgent guidance for navigating and circumventing the QTc-prolonging and torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19)" Mayo Clin Proc, Apr 7, epub ahead of print
  19. Borba MGS, Val FFA, Sampaio VS, et al. (2020) "Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-2) infection: A randomized clinical trial." JAMA Netw Open, Apr 1, epub ahead of print
  20. mitra RL, Greenstein SA, Epstein lm (2020) "An algorithm for managing QT prolongation in coronavirus disease 2019 (COVID-19) patients treated with either chloroquine or hydroxychloroquine in conjunction with azithromycin; Possible benefits of intravenous lidocaine." HeartRythm Case Rep, Apr 1, epub ahead of print
  21. (2024) "Product Information. Hydroxychloroquine Sulfate (hydroxychloroquine)." Dr. Reddy's Laboratories Inc
  22. (2023) "Product Information. Plaquenil (hydroxychloroquine)." Sanofi-Aventis Canada Inc
  23. (2024) "Product Information. Quinoric (hydroxychloroquine)." Bristol Laboratories Ltd
  24. (2024) "Product Information. Hydroxychloroquine (GH) (hydroxychloroquine)." Generic Health Pty Ltd
  25. (2023) "Product Information. HIDROXICLOROQUINA RATIOPHARM (hidroxicloroquina)." RATIOPHARM ESPANA S.A.
  26. Zapata LV, Boyce RD, Chou E, et al. (2024) QTc Prolongation with the use of hydroxychloroquine and concomitant arrhythmogenic medications: A retrospective study using electronic health records data https://pmc.ncbi.nlm.nih.gov/articles/PMC9167427/
  27. (2022) "Product Information. Avloclor (chloroquine)." Alliance Pharmaceuticals Ltd
  28. (2024) "Product Information. Chloroquine Phosphate (chloroquine)." Rising Pharmaceuticals
Major

ketamine midazolam

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron) and MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.

MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals

Drug and food interactions

Major

ketamine food

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.

MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
Moderate

chloroquine food

Applies to: chloroquine

GENERALLY AVOID: Theoretically, grapefruit and grapefruit juice may increase the plasma concentrations of hydroxychloroquine or chloroquine and the risk of toxicities such as QT interval prolongation and ventricular arrhythmias. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruit. Following coadministration with cimetidine, a weak to moderate CYP450 3A4 inhibitor, a 2-fold increase in chloroquine exposure occurred. Since chloroquine and hydroxychloroquine have similar structures and metabolic elimination pathways, a similar interaction may be observed with hydroxychloroquine. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

ADJUST DOSING INTERVAL: Administration with food or milk may reduce the incidence of hydroxychloroquine-related gastrointestinal adverse effects.

MANAGEMENT: Although clinical data are lacking, it may be advisable to avoid the consumption of grapefruit, grapefruit juice, and any supplement containing grapefruit extract during hydroxychloroquine or chloroquine therapy. Hydroxychloroquine should be administered with food or milk to reduce the occurrence of gastrointestinal upset.

References (5)
  1. (2024) "Product Information. Hydroxychloroquine Sulfate (hydroxychloroquine)." Dr. Reddy's Laboratories Inc
  2. (2023) "Product Information. Plaquenil (hydroxychloroquine)." Sanofi-Aventis Canada Inc
  3. (2024) "Product Information. Quinoric (hydroxychloroquine)." Bristol Laboratories Ltd
  4. (2024) "Product Information. Hydroxychloroquine (GH) (hydroxychloroquine)." Generic Health Pty Ltd
  5. (2023) "Product Information. HIDROXICLOROQUINA RATIOPHARM (hidroxicloroquina)." RATIOPHARM ESPANA S.A.
Moderate

ketamine food

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of ketamine. Use in combination may result in additive central nervous system (CNS) depression and/or impairment of judgment, thinking, and psychomotor skills.

GENERALLY AVOID: Coadministration of oral ketamine with grapefruit juice may significantly increase the plasma concentrations of S(+) ketamine, the dextrorotatory enantiomer of ketamine. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. When a single 0.2 mg/kg dose of S(+) ketamine was administered orally on study day 5 with grapefruit juice (200 mL three times daily for 5 days) in 12 healthy volunteers, mean S(+) ketamine peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 2.1- and 3.0-fold, respectively, compared to administration with water. In addition, the elimination half-life of S(+) ketamine increased by 24% with grapefruit juice, and the ratio of the main metabolite norketamine to ketamine was decreased by 57%. The pharmacodynamics of ketamine were also altered by grapefruit juice. Specifically, self-rated relaxation was decreased and performance in the digit symbol substitution test was increased with grapefruit juice, but other behavioral or analgesic effects were not affected.

MANAGEMENT: Patients receiving ketamine should not drink alcohol. Caution is advised when ketamine is used in patients with acute alcohol intoxication or a history of chronic alcoholism. Following anesthesia with ketamine, patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination, such as driving or operating hazardous machinery, for at least 24 hours and until they know how the medication affects them. Patients treated with oral ketamine should also avoid consumption of grapefruit and grapefruit juice during treatment. Otherwise, dosage reductions of oral ketamine should be considered.

References (4)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
  4. Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2012) "S-ketamine concentrations are greatly increased by grapefruit juice." Eur J Clin Pharmacol, 68, p. 979-86
Moderate

midazolam food

Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)

GENERALLY AVOID: The pharmacologic activity of oral midazolam, triazolam, and alprazolam may be increased if taken after drinking grapefruit juice. The proposed mechanism is CYP450 3A4 enzyme inhibition. In addition, acute alcohol ingestion may potentiate CNS depression and other CNS effects of many benzodiazepines. Tolerance may develop with chronic ethanol use. The mechanism may be decreased clearance of the benzodiazepines because of CYP450 hepatic enzyme inhibition. Also, it has been suggested that the cognitive deficits induced by benzodiazepines may be increased in patients who chronically consume large amounts of alcohol.

MANAGEMENT: The manufacturer recommends that grapefruit juice should not be taken with oral midazolam. Patients taking triazolam or alprazolam should be monitored for excessive sedation. Alternatively, the patient could consume orange juice which does not interact with these drugs. Patients should be advised to avoid alcohol during benzodiazepine therapy.

References (7)
  1. (2002) "Product Information. Xanax (alprazolam)." Pharmacia and Upjohn
  2. (2002) "Product Information. Valium (diazepam)." Roche Laboratories
  3. (2001) "Product Information. Halcion (triazolam)." Pharmacia and Upjohn
  4. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  5. Kupferschmidt HHT, Ha HR, Ziegler WH, Meier PJ, Krahenbuhl S (1995) "Interaction between grapefruit juice and midazolam in humans." Clin Pharmacol Ther, 58, p. 20-8
  6. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  7. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.