Skip to main content

Drug Interactions between ceritinib and pseudoephedrine / terfenadine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

terfenadine ceritinib

Applies to: pseudoephedrine / terfenadine and ceritinib

MONITOR CLOSELY: Ceritinib can cause concentration-dependent prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. Across the development program for ceritinib, one of 304 patients (less than 1%) treated with dosages ranging from 50 mg to 750 mg was found to have a QTc greater than 500 msec and 10 patients (3%) had an increase from baseline QTc greater than 60 msec. A central tendency analysis of the QTc data at average steady-state concentrations predicted a QTc increase of 16 msec at the 750 mg dose. A pharmacokinetic/pharmacodynamic analysis suggested concentration-dependent QTc prolongation. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia, hypocalcemia). Moreover, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Caution is recommended if ceritinib is used in combination with other drugs that can prolong the QT interval. ECG and serum electrolytes, including potassium, magnesium and calcium, should be monitored before starting ceritinib therapy and periodically during treatment. Ceritinib should not be started if baseline QTc is greater than 500 msec. Likewise, treatment should be withheld in patients who develop a QTc interval greater than 500 msec on at least 2 separate ECGs until the QTc interval is less than 481 msec or recovery to baseline (if the QTc interval is greater than or equal to 481 msec), then resume ceritinib with a 150 mg dosage reduction. Permanently discontinue ceritinib therapy if QTc prolongation develops in combination with torsade de pointes or polymorphic ventricular tachycardia or signs and symptoms of serious arrhythmia. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. (2014) "Product Information. Zykadia (ceritinib)." Novartis Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Major

terfenadine food

Applies to: pseudoephedrine / terfenadine

CONTRAINDICATED: The consumption of grapefruit juice has been associated with significantly increased plasma concentrations of terfenadine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. Terfenadine in high serum levels has been associated with prolongation of the QT interval and development of torsade de pointes, a potentially fatal ventricular arrhythmia.

MANAGEMENT: Due to the risk of cardiotoxicity, patients receiving the drug should be advised to avoid consumption of grapefruit products. Loratadine, cetirizine, and fexofenadine may be safer alternatives in patients who may have trouble adhering to the dietary restriction.

References

  1. Honig PK, Woosley RL, Zamani K, Conner DP, Cantilena LR Jr (1992) "Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin." Clin Pharmacol Ther, 52, p. 231-8
  2. Zimmermann M, Duruz H, Guinand O, et al. (1992) "Torsades de Pointes after treatment with terfenadine and ketoconazole." Eur Heart J, 13, p. 1002-3
  3. Mathews DR, McNutt B, Okerholm R, et al. (1991) "Torsades de pointes occurring in association with terfenadine use." JAMA, 266, p. 2375-6
  4. Monahan BP, Ferguson CL, Killeavy ES, et al. (1990) "Torsades de pointes occurring in association with terfenadine use." JAMA, 264, p. 2788-90
  5. Honig PK, Wortham DC, Zamani K, et al. (1993) "Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences." JAMA, 269, p. 1513-8
  6. Pohjola-Sintonen S, Viitasalo M, Toivonene L, Neuvonen P (1993) "Torsades de pointes after terfenadine-itraconazole interaction." BMJ, 306, p. 186
  7. Cortese LM, Bjornson DC (1992) "Potential interaction between terfenadine and macrolide antibiotics." Clin Pharm, 11, p. 675
  8. Paris DG, Parente TF, Bruschetta HR, Guzman E, Niarchos AP (1994) "Torsades-de-pointes induced by erythromycin and terfenadine." Am J Emerg Med, 12, p. 636-8
  9. Zechnich AD, Haxby DG (1996) "Drug interactions associated with terfenadine and related nonsedating antihistamines." West J Med, 164, p. 68-9
  10. Honig PK, Wortham DC, Lazarev A, Cantilena LR (1996) "Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine." J Clin Pharmacol, 36, p. 345-51
  11. Woosley RL (1996) "Cardiac actions of antihistamines." Annu Rev Pharmacol Toxicol, 36, p. 233-52
  12. Benton RE, Honig PK, Zamani K, Cantilena LR, Woosley RL (1996) "Grapefruit juice alters terfenadine pharmacokinetics resulting in prolongation of repolarization on the electrocardiogram." Clin Pharmacol Ther, 59, p. 383-8
  13. Hsieh MH, Chen SA, Chiang CE, et al. (1996) "Drug-induced torsades de pointes in one patient with congenital long QT syndrome." Int J Cardiol, 54, p. 85-8
  14. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  15. Rau SE, Bend JR, Arnold JMO, Tran LT, Spence JD, Bailey DG (1997) "Grapefruit juice terfenadine single-dose interaction: Magnitude, mechanism, and relevance." Clin Pharmacol Ther, 61, p. 401-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
View all 17 references

Switch to consumer interaction data

Major

ceritinib food

Applies to: ceritinib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of ceritinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because ceritinib is associated with concentration-dependent prolongation of the QT interval, increased levels may potentiate the risk of ventricular arrhythmias such as torsade de pointes and sudden death. Other, more common side effects such as diarrhea, nausea, vomiting, abdominal pain, hyperglycemia, and bradycardia may also increase.

ADJUST DOSING INTERVAL: Food increases the oral bioavailability of ceritinib. The mechanism of interaction is unknown. Compared to the fast state, administration of a single 500 mg dose of ceritinib with a high-fat meal (approximately 1000 calories; 58 grams of fat) increased ceritinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 41% and 73%, respectively, and administration with a low-fat meal (approximately 330 calories; 9 grams of fat) increased ceritinib Cmax and AUC by 43% and 58%, respectively. A dose of 600 mg or higher taken with a meal is expected to produce systemic exposure exceeding that from a 750 mg dose taken in the fasted state, which may lead to increased adverse effects.

MANAGEMENT: Patients treated with ceritinib should avoid consumption of grapefruit, grapefruit juice, and any supplement containing grapefruit extract. Ceritinib should be administered on an empty stomach (i.e., avoid administration within 2 hours of a meal).

References

  1. (2014) "Product Information. Zykadia (ceritinib)." Novartis Pharmaceuticals

Switch to consumer interaction data

Moderate

pseudoephedrine food

Applies to: pseudoephedrine / terfenadine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.