Skip to main content

Drug Interactions between Cardizem CD and zanubrutinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

dilTIAZem zanubrutinib

Applies to: Cardizem CD (diltiazem) and zanubrutinib

ADJUST DOSE: Coadministration with moderate inhibitors of CYP450 3A4 may significantly increase the plasma concentrations of zanubrutinib, which is primarily metabolized by the isoenzyme. Based on pharmacokinetic modeling, the moderate CYP450 3A4 inhibitor diltiazem (60 mg three times daily) is predicted to increase zanubrutinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 151% and 157%, respectively. Another moderate CYP450 3A4 inhibitor, erythromycin (500 mg four times daily), is predicted to increase zanubrutinib Cmax and AUC by 284% and 317%, respectively. Fluconazole 200 mg once daily is predicted to increase zanubrutinib Cmax and AUC by 179% and 177%, respectively, while fluconazole 400 mg once daily is predicted to increase zanubrutinib Cmax and AUC by 270% and 284%, respectively. Increased zanubrutinib exposure may potentiate the risk of toxicities such as hemorrhage, infection, cytopenias, malignancies, and serious cardiac arrhythmias (primarily atrial fibrillation and atrial flutter).

MANAGEMENT: The manufacturer recommends reducing the dosage of zanubrutinib to 80 mg twice daily when coadministered with moderate CYP450 3A4 inhibitors. Patients should be closely monitored for development of zanubrutinib-related toxicities, and further dosage adjustments made or treatment withheld as needed in accordance with the product labeling. Following discontinuation of the CYP450 3A4 inhibitor, the previous dosage of zanubrutinib should be resumed.

References

  1. (2023) "Product Information. Brukinsa (zanubrutinib)." BeiGene USA, Inc, SUPPL-7
  2. (2022) "Product Information. Brukinsa (zanubrutinib)." Innomar Strategies Inc.
  3. (2022) "Product Information. Brukinsa (zanubrutinib)." Beigene Aus Pty Ltd

Switch to consumer interaction data

Drug and food interactions

Major

zanubrutinib food

Applies to: zanubrutinib

GENERALLY AVOID: Grapefruit and/or grapefruit juice may increase the plasma concentrations of zanubrutinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. When zanubrutinib was administered with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily) in clinical study subjects, zanubrutinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 157% and 278%, respectively. Data derived from pharmacokinetic modeling have also been reported for several additional CYP450 3A4 inhibitors. For example, the potent CYP450 3A4 inhibitor clarithromycin (250 mg twice daily) is predicted to increase zanubrutinib Cmax and AUC by 175% and 183%, respectively. The moderate CYP450 3A4 inhibitor diltiazem (60 mg three times daily) is predicted to increase zanubrutinib Cmax and AUC by 151% and 157%, respectively. Another moderate CYP450 3A4 inhibitor, erythromycin (500 mg four times daily), is predicted to increase zanubrutinib Cmax and AUC by 284% and 317%, respectively. Likewise, fluconazole 200 mg once daily is predicted to increase zanubrutinib Cmax and AUC by 179% and 177%, respectively; while fluconazole 400 mg once daily is predicted to increase zanubrutinib Cmax and AUC by 270% and 284%, respectively. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased zanubrutinib exposure may potentiate the risk of toxicities such as hemorrhage, infection, cytopenias, malignancies, and serious cardiac arrhythmias (primarily atrial fibrillation and atrial flutter).

Food does not affect the oral bioavailability of zanubrutinib. No clinically significant differences in zanubrutinib Cmax or AUC were observed following administration of a high-fat meal (approximately 1000 calories; 50% from fat) in healthy subjects.

MANAGEMENT: Zanubrutinib may be administered with or without food. Patients should avoid consumption of grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during treatment with zanubrutinib.

References

  1. (2023) "Product Information. Brukinsa (zanubrutinib)." BeiGene USA, Inc, SUPPL-7
  2. (2022) "Product Information. Brukinsa (zanubrutinib)." Innomar Strategies Inc.
  3. (2022) "Product Information. Brukinsa (zanubrutinib)." Beigene Aus Pty Ltd

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 5 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.