Skip to main content

Drug Interactions between cannabidiol and Dynacin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

minocycline cannabidiol

Applies to: Dynacin (minocycline) and cannabidiol

MONITOR: Coadministration of cannabidiol with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Cannabidiol causes dose-related elevations of liver transaminases, both alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In controlled studies, the incidence of ALT elevations above 3 times the upper limit of normal (ULN) was 13% with cannabidiol versus 1% with placebo, and 17% in patients taking cannabidiol 20 mg/kg/day compared to 1% taking 10 mg/kg/day. Less than 1% of cannabidiol-treated patients had ALT or AST levels greater than 20 times the ULN. Some cases required hospitalization. In clinical trials, serum transaminase elevations typically occurred within the first two months of treatment initiation, but up to 18 months were reported in some cases, particularly in patients taking concomitant valproate. Resolution occurred with discontinuation or dosage reduction of cannabidiol and/or concomitant valproate in about two-thirds of the cases. In about one-third of the cases, transaminase elevations resolved during continued cannabidiol treatment, without dose reduction. The majority of ALT elevations occurred in patients taking concomitant valproate. Concomitant use of clobazam also increased the incidence of transaminase elevations, but to a lesser extent. In cannabidiol-treated patients, the incidence of ALT elevations greater than 3 times the ULN was 30% in patients taking both concomitant valproate and clobazam, 21% in patients taking concomitant valproate (without clobazam), 4% in patients taking concomitant clobazam (without valproate), and 3% in patients taking neither drug. Insufficient data are available to assess the risk of concomitant administration of other hepatotoxic drugs. Finally, patients with baseline transaminase levels above the ULN also had higher rates of transaminase elevations during cannabidiol treatment. In patients taking 20 mg/kg/day in controlled trials, the frequency of treatment-emergent ALT elevations greater than 3 times the ULN was 30% when ALT was above the ULN at baseline, compared to 12% when ALT was within the normal range at baseline. No patient taking cannabidiol 10 mg/kg/day experienced ALT elevations greater than 3 times the ULN when ALT was above the ULN at baseline, compared with 2% of patients in whom ALT was within the normal range at baseline.

MANAGEMENT: Caution is advised if cannabidiol is used in patients who are currently receiving or have recently received treatment with other hepatotoxic agents, and vice versa. Serum transaminases and total bilirubin levels should be obtained prior to initiating cannabidiol, and patients with elevated baseline transaminase levels above 3 times the ULN accompanied by elevations in bilirubin above 2 times the ULN should be evaluated. Repeat levels should be obtained at 1 month, 3 months, and 6 months after initiation of cannabidiol treatment, and periodically thereafter or as clinically indicated (e.g., within 1 month following changes in cannabidiol dosage or addition of/changes in medications that are known to impact the liver). Consider more frequent monitoring of serum transaminases and bilirubin in patients who are taking valproate or who have elevated liver enzymes at baseline. Patients who develop clinical signs or symptoms suggestive of hepatic dysfunction (e.g., unexplained nausea, vomiting, right upper quadrant abdominal pain, fatigue, anorexia, jaundice, dark urine) should have serum transaminases and total bilirubin measured promptly, and cannabidiol treatment interrupted or discontinued as appropriate. Cannabidiol should be discontinued in patients with elevations of transaminase levels greater than 3 times the ULN and bilirubin levels greater than 2 times the ULN. Patients with sustained transaminase elevations of greater than 5 times the ULN should also have treatment discontinued. Patients with prolonged elevations of serum transaminases should be evaluated for other possible causes. Also consider dosage adjustment or discontinuation of any coadministered medication that is known to affect the liver.

References (2)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2018) "Product Information. Epidiolex (cannabidiol)." Greenwich Biosciences LLC

Drug and food/lifestyle interactions

Moderate

cannabidiol food/lifestyle

Applies to: cannabidiol

ADJUST DOSING INTERVAL: Food may affect the plasma concentrations of cannabidiol. In healthy volunteers, administration of cannabidiol with a high-fat/high-calorie meal increased cannabidiol peak plasma concentration (Cmax) by 5-fold and systemic exposure (AUC) by 4-fold and reduced the total variability compared with administration in the fasted state.

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of cannabidiol. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of cannabidiol by certain compounds present in grapefruit. The interaction has not been studied, but the product labeling for cannabidiol recommends consideration of a dosage reduction when used with strong or moderate inhibitors of CYP450 3A4. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition.

MANAGEMENT: Cannabidiol should be taken about the same time each day consistently either with or without food. Patients should limit the consumption of grapefruit and grapefruit juice. If they are coadministered, cannabidiol levels should be monitored and the dosage adjusted as necessary.

References (1)
  1. (2018) "Product Information. Epidiolex (cannabidiol)." Greenwich Biosciences LLC
Moderate

minocycline food/lifestyle

Applies to: Dynacin (minocycline)

GENERALLY AVOID: The oral bioavailability of quinolone and tetracycline antibiotics may be reduced by concurrent administration of preparations containing polyvalent cations such as aluminum, calcium, iron, magnesium, and zinc. Therapeutic failure may result. The proposed mechanism is chelation of quinolone and tetracycline antibiotics by di- and trivalent cations, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. Reduced gastrointestinal absorption of the cations should also be considered.

MANAGEMENT: Concomitant administration of oral quinolone and tetracycline antibiotics with preparations containing aluminum, calcium, iron, magnesium, and/or zinc salts should generally be avoided. Otherwise, the times of administration should be staggered by as much as possible to minimize the potential for interaction. Quinolones should typically be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation preparations, depending on the quinolone and formulation. Likewise, tetracyclines and polyvalent cation preparations should typically be administered 2 to 4 hours apart. The prescribing information for the antibiotic should be consulted for more specific dosing recommendations.

References (51)
  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
  5. Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
  6. Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
  7. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
  8. Nguyen VX, Nix DE, Gillikin S, Schentag JJ (1989) "Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline." Antimicrob Agents Chemother, 33, p. 434-6
  9. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
  10. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
  11. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
  12. Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
  13. Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
  14. Garty M, Hurwitz A (1980) "Effect of cimetidine and antacids on gastrointestinal absorption of tetracycline." Clin Pharmacol Ther, 28, p. 203-7
  15. Gotz VP, Ryerson GG (1986) "Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease." Drug Intell Clin Pharm, 20, p. 694-6
  16. McCormack JP, Reid SE, Lawson LM (1990) "Theophylline toxicity induced by tetracycline." Clin Pharm, 9, p. 546-9
  17. D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
  18. Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
  19. Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
  20. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  21. Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
  22. (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
  23. Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
  24. (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
  25. Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
  26. Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
  27. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
  28. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
  29. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  30. Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
  31. Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
  32. Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
  33. Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
  34. Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
  35. Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
  36. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  37. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  38. (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
  39. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  40. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
  41. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
  42. Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
  43. Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
  44. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
  45. Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
  46. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
  47. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  48. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
  49. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
  50. (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
  51. (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.