Skip to main content

Drug Interactions between caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate and Calquence

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

phenylephrine caffeine

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate and caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Moderate

sodium salicylate sodium citrate

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate and caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

MONITOR: Agents that cause urinary alkalinization can reduce serum salicylate concentrations in patients receiving anti-inflammatory dosages of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to increased urinary pH, resulting in increased renal salicylate clearance especially above urine pH of 7. This interaction is sometimes exploited in the treatment of salicylate toxicity.

MANAGEMENT: Patients treated chronically with urinary alkalinizers and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. Berg KJ (1977) "Acute acetylsalicylic acid poisoning: treatment with forced alkaline diuresis and diuretics." Eur J Clin Pharmacol, 12, p. 111-6
  2. Prescott LF, Balali-Mood M, Critchley JA, Johnstone AF, Proudfoot AT (1982) "Diuresis or urinary alkalinisation for salicylate poisoning?" Br Med J (Clin Res Ed), 285, p. 1383-6
  3. Balali-Mood M, Prescott LF (1980) "Failure of alkaline diuresis to enhance diflunisal elimination." Br J Clin Pharmacol, 10, p. 163-5
  4. Berg KJ (1977) "Acute effects of acetylsalicylic acid in patients with chronic renal insufficiency." Eur J Clin Pharmacol, 11, p. 111-6
  5. Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Major

acalabrutinib food

Applies to: Calquence (acalabrutinib)

GENERALLY AVOID: Consumption of grapefruit and/or grapefruit juice may increase the plasma concentrations of acalabrutinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice specifically, but has been reported for other CYP450 3A4 inhibitors. When acalabrutinib was administered with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily for 5 days) in 17 healthy subjects, acalabrutinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 3.9- and 5.1-fold, respectively. Physiologically based pharmacokinetic (PBPK) simulations showed that moderate CYP450 3A4 inhibitors (erythromycin, fluconazole, diltiazem) increased acalabrutinib Cmax and AUC by 2- to nearly 3-fold. In healthy subjects, administration of acalabrutinib with the moderate CYP450 3A4 inhibitors fluconazole (400 mg as a single dose) or isavuconazole (200 mg as a repeated dose for 5 days) increased acalabrutinib Cmax and AUC by 1.4- to 2-fold, while the Cmax and AUC of the active metabolite, ACP-5862, was decreased by 0.65- to 0.88-fold. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased acalabrutinib exposure may potentiate the risk of toxicities such as hemorrhage, infection, cytopenias, malignancies, and atrial fibrillation or flutter.

Food may delay the absorption of acalabrutinib, but does not appear to affect the overall extent of absorption. When a single 100 mg tablet or a 75 mg developmental formulation of acalabrutinib was administered with a high-fat, high-calorie meal (approximately 918 calories; 59 grams carbohydrate, 59 grams fat, 39 grams protein) in healthy study subjects, mean acalabrutinib Cmax was decreased by 54% and 73%, respectively, while time to reach Cmax was delayed by 1 to 2 hours compared to administration under fasted conditions. However, mean AUC was not affected.

MANAGEMENT: Acalabrutinib may be administered with or without food. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with acalabrutinib.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
  5. Chen B, Zhou D, Wei H, et al. (2022) "Acalabrutinib CYP3A-mediated drug-drug interactions: clinical evaluations and physiologically based pharmacokinetic modelling to inform dose adjustment strategy" Br J Clin Pharmacol, 88, p. 3716-29
View all 5 references

Switch to consumer interaction data

Moderate

pheniramine food

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

phenylephrine food

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Minor

caffeine food

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.