Drug Interactions between Caduet and itraconazole
This report displays the potential drug interactions for the following 2 drugs:
- Caduet (amlodipine/atorvastatin)
- itraconazole
Interactions between your drugs
itraconazole amLODIPine
Applies to: itraconazole and Caduet (amlodipine / atorvastatin)
MONITOR CLOSELY: Itraconazole exhibits a dose-related negative inotropic effect which may be additive to those of calcium channel blockers (CCBs). Theoretically, coadministration may potentiate the risk of ventricular dysfunction, congestive heart failure, and peripheral and pulmonary edema, particularly in patients with preexisting risk factors (e.g., a history of congestive heart failure; cardiac disease such as ischemic and valvular disease; significant pulmonary disease such as chronic obstructive pulmonary disorder; edematous disorders such as renal failure). In addition, both itraconazole and its major metabolite, hydroxyitraconazole, inhibit CYP450 3A4 metabolism and may interfere with the clearance of certain CCBs like the dihydropyridines (amlodipine, felodipine, isradipine, lacidipine, nicardipine, nifedipine, nimodipine, nisoldipine), diltiazem, and verapamil. Significant increases of severalfold in felodipine and nifedipine plasma concentrations have been observed during coadministration with itraconazole, and there have been case reports of leg and ankle edema in patients treated with various itraconazole-dihydropyridine combinations. Itraconazole alone has also been associated with postmarketing reports of congestive heart failure, peripheral edema, and pulmonary edema in patients treated for onychomycosis and/or systemic fungal infections. Heart failure was more frequently reported in patients receiving a dosage of 400 mg/day, although there were also cases reported among those receiving lower daily dosages.
MANAGEMENT: Caution is advised if itraconazole must be used concomitantly with CCBs. Close monitoring of clinical response and tolerance is recommended, and patients should be advised to seek medical attention if they experience edema or swelling of the lower extremities; sudden, unexplained weight gain; difficulty breathing; chest pain or tightness; or hypotension as indicated by dizziness, fainting, or orthostasis. Appropriate dosage adjustment of the CCB may be necessary when used with itraconazole. Some authorities consider concomitant administration of bepridil and itraconazole to be contraindicated during and for 2 weeks after treatment with itraconazole.
References (7)
- (2002) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
- Rosen T (1994) "Debilitating edema associated with itraconazole therapy." Arch Dermatol, 130, p. 260-1
- Neuvonen PJ, Suhonen R (1995) "Itraconazole interacts with felodipine." J Am Acad Dermatol, 33, p. 134-5
- Tailor SAN, Gupta AK, Walker SE, Shear NH (1996) "Peripheral edema due to nifedipine-itraconazole interaction: a case report." Arch Dermatol, 132, p. 350-2
- Tailor SAN (1996) "Peripheral edema due to nifedipine-itraconazole interaction: a case report." Arch Dermatol, 132, p. 1374
- Jalava KM, Olkkola KT, Neuvonen PJ (1997) "Itraconazole greatly increases plasma concentrations and effects of felodipine." Clin Pharmacol Ther, 61, p. 410-5
- Cerner Multum, Inc. "Australian Product Information."
itraconazole atorvastatin
Applies to: itraconazole and Caduet (amlodipine / atorvastatin)
ADJUST DOSE: Coadministration with itraconazole may significantly increase the plasma concentrations of atorvastatin and potentiate the risk of statin-induced myopathy. The proposed mechanism is itraconazole inhibition of atorvastatin metabolism via intestinal and hepatic CYP450 3A4. When single doses of atorvastatin 20 mg and 40 mg were coadministered with itraconazole 200 mg daily for 4 days, atorvastatin systemic exposure (AUC) increased by 2.5- and 3.3-fold, respectively, compared to atorvastatin administered alone. High levels of statin or HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death.
MANAGEMENT: The benefits of using atorvastatin in combination with itraconazole should be carefully weighed against the potentially increased risk of myopathy including rhabdomyolysis. The lowest effective dosage of atorvastatin should be used, and should not exceed 20 mg/day when prescribed with itraconazole. Fluvastatin, pitavastatin, pravastatin, and rosuvastatin may be safer alternatives, since they are not metabolized by CYP450 3A4. All patients receiving statin therapy should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed.
References (8)
- Horn M (1996) "Coadministration of itraconazole with hypolipidemic agents may induce rhabdomyolysis in healthy individuals." Arch Dermatol, 132, p. 1254
- (2001) "Product Information. Lipitor (atorvastatin)." Parke-Davis
- Neuvonen PJ, Kantola T, Kivisto KT (1998) "Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole." Clin Pharmacol Ther, 63, p. 332-41
- Kivisto KT, Kantola T, Neuvonen PJ (1998) "Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin." Br J Clin Pharmacol, 46, p. 49-53
- Kantola T, Kivisto KT, Neuvonen PJ (1998) "Effect of itraconazole on the pharmacokinetics of atorvastatin." Clin Pharmacol Ther, 64, p. 58-65
- Lomaestro BM, Piatek MA (1998) "Update on drug interactions with azole antifungal agents." Ann Pharmacother, 32, p. 915-28
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
amLODIPine atorvastatin
Applies to: Caduet (amlodipine / atorvastatin) and Caduet (amlodipine / atorvastatin)
MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of HMG-CoA reductase inhibitors (i.e., statins) that are metabolized by the isoenzyme. Lovastatin and simvastatin are particularly susceptible because of their low oral bioavailability, but others such as atorvastatin and cerivastatin may also be affected. High levels of HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death. Clinically significant interactions have been reported with potent CYP450 3A4 inhibitors such as macrolide antibiotics, azole antifungals, protease inhibitors and nefazodone, and moderate inhibitors such as amiodarone, cyclosporine, danazol, diltiazem and verapamil.
MANAGEMENT: Caution is recommended if atorvastatin, cerivastatin, lovastatin, simvastatin, or red yeast rice (which contains lovastatin) is prescribed with a CYP450 3A4 inhibitor. It is advisable to monitor lipid levels and use the lowest effective statin dose. All patients receiving statin therapy should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. Fluvastatin, pravastatin, and rosuvastatin are not expected to interact with CYP450 3A4 inhibitors.
References (63)
- Spach DH, Bauwens JE, Clark CD, Burke WG (1991) "Rhabdomyolysis associated with lovastatin and erythromycin use." West J Med, 154, p. 213-5
- Ayanian JZ, Fuchs CS, Stone RM (1988) "Lovastatin and rhabdomyolysis." Ann Intern Med, 109, p. 682-3
- Corpier CL, Jones PH, Suki WN, et al. (1988) "Rhabdomyolysis and renal injury with lovastatin use. Report of two cases in cardiac transplant recipients." JAMA, 260, p. 239-41
- East C, Alivizatos PA, Grundy SM, Jones PH, Farmer JA (1988) "Rhabdomyolysis in patients receiving lovastatin after cardiac transplantation." N Engl J Med, 318, p. 47-8
- Norman DJ, Illingworth DR, Munson J, Hosenpud J (1988) "Myolysis and acute renal failure in a heart-transplant recipient receiving lovastatin." N Engl J Med, 318, p. 46-7
- (2002) "Product Information. Mevacor (lovastatin)." Merck & Co., Inc
- (2001) "Product Information. Zocor (simvastatin)." Merck & Co., Inc
- Dallaire M, Chamberland M (1994) "Severe rhabdomyolysis in a patient receiving lovastatin, danazol and doxycycline." Can Med Assoc J, 150, p. 1991-4
- Campana C, Iacona I, Regassi MB, et al. (1995) "Efficacy and pharmacokinetics of simvastatin in heart transplant recipients." Ann Pharmacother, 29, p. 235-9
- Lees RS, Lees AM (1995) "Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole." N Engl J Med, 333, p. 664-5
- Zhou LX, Finley DK, Hassell AE, Holtzman JL (1995) "Pharmacokinetic interaction between isradipine and lovastatin in normal, female and male volunteers." J Pharmacol Exp Ther, 273, p. 121-7
- Neuvonen PJ, Jalava KM (1996) "Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 60, p. 54-61
- Horn M (1996) "Coadministration of itraconazole with hypolipidemic agents may induce rhabdomyolysis in healthy individuals." Arch Dermatol, 132, p. 1254
- (2001) "Product Information. Lipitor (atorvastatin)." Parke-Davis
- Jacobson RH, Wang P, Glueck CJ (1997) "Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone." JAMA, 277, p. 296
- Jody DN (1997) "Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone." JAMA, 277, p. 296-7
- (2001) "Product Information. Baycol (cerivastatin)." Bayer
- Grunden JW, Fisher KA (1997) "Lovastatin-induced rhabdomyolysis possibly associated with clarithromycin and azithromycin." Ann Pharmacother, 31, p. 859-63
- Wong PW, Dillard TA, Kroenke K (1998) "Multiple organ toxicity from addition of erythromycin to long-term lovastatin therapy." South Med J, 91, p. 202-5
- Neuvonen PJ, Kantola T, Kivisto KT (1998) "Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole." Clin Pharmacol Ther, 63, p. 332-41
- Agbin NE, Brater DC, Hall SD (1997) "Interaction of diltiazem with lovastatin and pravastatin." Clin Pharmacol Ther, 61, p. 201
- Kivisto KT, Kantola T, Neuvonen PJ (1998) "Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin." Br J Clin Pharmacol, 46, p. 49-53
- Kantola T, Kivisto KT, Neuvonen PJ (1998) "Effect of itraconazole on the pharmacokinetics of atorvastatin." Clin Pharmacol Ther, 64, p. 58-65
- Kantola T, Kivisto KT, Neuvonen PJ (1998) "Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations." Clin Pharmacol Ther, 64, p. 177-82
- Azie NE, Brater DC, Becker PA, Jones DR, Hall SD (1998) "The interaction of diltiazem with lovastatin and pravastatin." Clin Pharmacol Ther, 64, p. 369-77
- Lomaestro BM, Piatek MA (1998) "Update on drug interactions with azole antifungal agents." Ann Pharmacother, 32, p. 915-28
- Kantola T, Kivisto KT, Neuvonen PJ (1999) "Effect of itraconazole on cerivastatin pharmacokinetics." Eur J Clin Pharmacol, 54, p. 851-5
- Malaty LI, Kuper JJ (1999) "Drug interactions of HIV protease inhibitors." Drug Safety, 20, p. 147-69
- Siedlik PH, Olson SC, Yang BB, Stern RH (1999) "Erythromycin coadministration increases plasma atorvastatin concentrations." J Clin Pharmacol, 39, p. 501-4
- Barry M, Mulcahy F, Merry C, Gibbons S, Back D (1999) "Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection." Clin Pharmacokinet, 36, p. 289-304
- Rodriguez JA, CrespoLeiro MG, Paniagua MJ, Cuenca JJ, Hermida LF, Juffe A, CastroBeiras A (1999) "Rhabdomyolysis in heart transplant patients on HMG-CoA reductase inhibitors and cyclosporine." Transplant Proc, 31, p. 2522-3
- Gruer PJK, Vega JM, Mercuri MF, Dobrinska MR, Tobert JA (1999) "Concomitant use of cytochrome P450 3A4 inhibitors and simvastatin." Am J Cardiol, 84, p. 811-5
- Gilad R, Lampl Y (1999) "Rhabdomyolysis induced by simvastatin and ketoconazole treatment." Clin Neuropharmacol, 22, p. 295-7
- Gullestad L, Nordal KP, Berg KJ, Cheng H, Schwartz MS, Simonsen S (1999) "Interaction between lovastatin and cyclosporine A after heart and kidney transplantation." Transplant Proc, 31, p. 2163-5
- Yeo KR, Yeo WW, Wallis EJ, Ramsay LE (1999) "Enhanced cholesterol reduction by simvastatin in diltiazem-treated patients." Br J Clin Pharmacol, 48, p. 610-5
- Maltz HC, Balog DL, Cheigh JS (1999) "Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporine." Ann Pharmacother, 33, p. 1176-9
- Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
- Jardine A, Holdaas H (1999) "Fluvastatin in combination with cyclosporin in renal transplant recipients: a review of clinical and safety experience." J Clin Pharm Ther, 24, p. 397-408
- Mousa O, Brater DC, Sundblad KJ, Hall SD (2000) "The interaction of diltiazem with simvastatin." Clin Pharmacol Ther, 67, p. 267-74
- Westphal JF (2000) "Macrolide - induced clinically relevant drug interactions with cytochrome P-450 (CYP) 3A4: an update focused on clarithromycin, azithromycin, and dirithromycin." Br J Clin Pharmacol, 50, p. 285-95
- Kusus M, Stapleton DD, Lertora JJL, Simon EE, Dreisbach AW (2000) "Rhabdomyolysis and acute renal failure in a cardiac transplant recipient due to multiple drug interactions." Am J Med Sci, 320, p. 394-7
- Lee AJ, Maddix DS (2001) "Rhabdomyolysis secondary to a drug interaction between simvastatin and clarithromycin." Ann Pharmacother, 35, p. 26-31
- Yeo KR, Yeo WW (2001) "Inhibitory effects of verapamil and diltiazem on simvastatin metabolism in human liver microsomes." Br J Clin Pharmacol, 51, p. 461-70
- Arnadottir M, Eriksson LO, Thysell H, Karkas JD (1993) "Plasma concentration profiles of simvastatin 3-hydroxy- 3-methylglutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin." Nephron, 65, p. 410-3
- Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) "New insights into the pharmacodynamic and pharmacokinetic properties of statins." Pharmacol Ther, 84, p. 413-28
- Garnett WR (1995) "Interactions with hydroxymethylglutaryl-coenzyme A reductase inhibitors." Am J Health Syst Pharm, 52, p. 1639-45
- Omar MA, Wilson JP (2002) "FDA adverse event reports on statin-associated rhabdomyolysis." Ann Pharmacother, 36, p. 288-95
- Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. (2002) "Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047." AIDS, 16, p. 569-577
- Amsden GW, Kuye O, Wei GC (2002) "A study of the interaction potential of azithromycin and clarithromycin with atorvastatin in healthy volunteers." J Clin Pharmacol, 42, p. 444-9
- Williams D, Feely J (2002) "Pharmacokinetic-Pharmacodynamic Drug Interactions with HMG-CoA Reductase Inhibitors." Clin Pharmacokinet, 41, p. 343-70
- Thompson M, Samuels S (2002) "Rhabdomyolysis with simvastatin and nefazodone." Am J Psychiatry, 159, p. 1607
- Huynh T, Cordato D, Yang F, et al. (2002) "HMG coA reductase-inhibitor-related myopathy and the influence of drug interactions." Intern Med J, 32(9-10), p. 486-90
- Paoletti R, Corsini A, Bellosta S (2002) "Pharmacological interactions of statins." Atheroscler Suppl, 3, p. 35-40
- Sipe BE, Jones RJ, Bokhart GH (2003) "Rhabdomyolysis Causing AV Blockade Due to Possible Atorvastatin, Esomeprazole, and Clarithromycin Interaction." Ann Pharmacother, 37, p. 808-11
- de Denus S, Spinler SA (2003) "Amiodarone's role in simvastatin-associated rhabdomyolysis." Am J Health Syst Pharm, 60, 1791; author reply 1791-2
- Skrabal MZ, Stading JA, Monaghan MS (2003) "Rhabdomyolysis associated with simvastatin-nefazodone therapy." South Med J, 96, p. 1034-5
- Andreou ER, Ledger S (2003) "Potential drug interaction between simvastatin and danazol causing rhabdomyolysis." Can J Clin Pharmacol, 10, p. 172-4
- Roten L, Schoenenberger RA, Krahenbuhl S, Schlienger RG (2004) "Rhabdomyolysis in association with simvastatin and amiodarone." Ann Pharmacother, 38, p. 978-81
- Jacobson TA (2004) "Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors." Am J Cardiol, 94, p. 1140-6
- Chouhan UM, Chakrabarti S, Millward LJ (2005) "Simvastatin interaction with clarithromycin and amiodarone causing myositis." Ann Pharmacother, 39, p. 1760-1
- Karnik NS, Maldonado JR (2005) "Antidepressant and statin interactions: a review and case report of simvastatin and nefazodone-induced rhabdomyolysis and transaminitis." Psychosomatics, 46, p. 565-8
- Neuvonen PJ, Backman JT, Niemi M (2008) "Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin." Clin Pharmacokinet, 47, p. 463-74
- (2021) "Product Information. Qelbree (viloxazine)." Supernus Pharmaceuticals Inc
Drug and food interactions
itraconazole food
Applies to: itraconazole
ADJUST DOSING INTERVAL: Food increases the absorption of itraconazole capsules but decreases the absorption of itraconazole oral solution. Cola beverages may increase the bioavailability of itraconazole capsules. Itraconazole capsules require an acidic gastric pH for adequate dissolution and subsequent absorption. Cola beverages help lower gastric pH and improve absorption.
GENERALLY AVOID: Grapefruit juice may impair the absorption of itraconazole capsules, resulting in decreased antifungal effects. In a small, randomized, crossover study, the administration of itraconazole capsules with double-strength grapefruit juice (compared to water) was associated with significantly decreased (43%) plasma concentrations of itraconazole and its pharmacologically active hydroxy metabolite, as well as delayed times to reach peak concentrations of both. The exact mechanism of interaction is unknown but may involve reduced absorption of itraconazole secondary to enhanced activity of intestinal P-glycoprotein drug efflux pumps and delayed gastric emptying induced by certain compounds present in grapefruits. Another study reported no pharmacokinetic changes with single-strength grapefruit juice. Whether or not these observations apply to itraconazole oral solution is unknown.
MANAGEMENT: The manufacturer recommends that the capsules be taken immediately after a full meal and the solution be taken on an empty stomach to ensure maximal absorption. Cola beverages may help increase the bioavailability of itraconazole capsules, particularly in patients with hypochlorhydria or those treated concomitantly with gastric acid suppressants. Until more information is available, it may be advisable to avoid the consumption of grapefruits and grapefruit juice during itraconazole therapy.
References (10)
- Van Peer A, Woestenborghs R, Heykants J, et al. (1989) "The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects." Eur J Clin Pharmacol, 36, p. 423-6
- Wishart JM (1987) "The influence of food on the pharmacokinetics of itraconazole in patients with superficial fungal infection." J Am Acad Dermatol, 17, p. 220-3
- (2002) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
- Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, Gaffar MC, Moskovitz BL, Mechlinski W, Van de Velde V (1993) "Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers." Antimicrob Agents Chemother, 37, p. 778-84
- Zimmermann T, Yeates RA, Albrecht M, Laufen H, Wildfeuer A (1994) "Influence of concomitant food intake on the gastrointestinal absorption of fluconazole and itraconazole in japanese subjects." Int J Clin Pharmacol Res, 14, p. 87-93
- (2022) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
- Kawakami M, Suzuki K, Ishizuka T, Hidaka T, Matsuki Y, Nakamura H (1998) "Effect of grapefruit juice on pharmacokinetics of itraconazole in healthy subjects." Int J Clin Pharmacol Ther, 36, p. 306-8
- Barone JA, Moskotitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L (1998) "Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers." Pharmacotherapy, 18, p. 295-301
- Penzak SR, Gubbins PO, Gurley BJ, Wang PL, Saccente M (1999) "Grapefruit juice decreases the systemic availability of itraconazole capsules in healthy volunteers." Ther Drug Monit, 21, p. 304-9
- Katz HI (1999) "Drug interactions of the newer oral antifungal agents." Br J Dermatol, 141, p. 26-32
atorvastatin food
Applies to: Caduet (amlodipine / atorvastatin)
GENERALLY AVOID: Coadministration with grapefruit juice may increase the plasma concentrations of atorvastatin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. When a single 40 mg dose of atorvastatin was coadministered with 240 mL of grapefruit juice, atorvastatin peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 16% and 37%, respectively. Greater increases in Cmax (up to 71%) and/or AUC (up to 2.5 fold) have been reported with excessive consumption of grapefruit juice (>=750 mL to 1.2 liters per day). Clinically, high levels of HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death.
ADJUST DOSING INTERVAL: Fibres such as oat bran and pectin may diminish the pharmacologic effects of HMG-CoA reductase inhibitors by interfering with their absorption from the gastrointestinal tract.
MANAGEMENT: Patients receiving therapy with atorvastatin should limit their consumption of grapefruit juice to no more than 1 liter per day. Patients should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. In addition, patients should either refrain from the use of oat bran and pectin or, if concurrent use cannot be avoided, to separate the administration times by at least 2 to 4 hours.
References (7)
- Richter WO, Jacob BG, Schwandt P (1991) "Interaction between fibre and lovastatin." Lancet, 338, p. 706
- McMillan K (1996) "Considerations in the formulary selection of hydroxymethylglutaryl coenzyme a reductase inhibitors." Am J Health Syst Pharm, 53, p. 2206-14
- (2001) "Product Information. Lipitor (atorvastatin)." Parke-Davis
- Boberg M, Angerbauer R, Fey P, Kanhai WK, Karl W, Kern A, Ploschke J, Radtke M (1997) "Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P45 isozymes involved." Drug Metab Dispos, 25, p. 321-31
- Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
- Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
- Neuvonen PJ, Backman JT, Niemi M (2008) "Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin." Clin Pharmacokinet, 47, p. 463-74
amLODIPine food
Applies to: Caduet (amlodipine / atorvastatin)
MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.
MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.
References (10)
- Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
- Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
- Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
- Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
- Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
- Cerner Multum, Inc. "Australian Product Information."
- Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
- Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
- (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
- (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
amLODIPine food
Applies to: Caduet (amlodipine / atorvastatin)
MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.
MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.
References (14)
- Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
- Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
- Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
- Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
- O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
- Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
- Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
- Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
- Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
- Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
- Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
- McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
- Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
- Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
amLODIPine food
Applies to: Caduet (amlodipine / atorvastatin)
The consumption of grapefruit juice may slightly increase plasma concentrations of amlodipine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Data have been conflicting and the clinical significance is unknown. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.
References (6)
- Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
- Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
- Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
- Vincent J, Harris SI, Foulds G, Dogolo LC, Willavize S, Friedman HL (2000) "Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine." Br J Clin Pharmacol, 50, p. 455-63
- Josefsson M, Ahlner J (2002) "Amlodipine and grapefruit juice." Br J Clin Pharmacol, 53, 405; discussion 406
- Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.