Skip to main content

Drug Interactions between buprenorphine and IsonaRif

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

rifAMPin isoniazid

Applies to: IsonaRif (isoniazid / rifampin) and IsonaRif (isoniazid / rifampin)

MONITOR CLOSELY: The risk of hepatotoxicity is greater when rifampin and isoniazid (INH) are given concomitantly, than when either drug is given alone. The proposed mechanism is rifampin's induction of isoniazid hydrolase, an enzyme involved in the conversion of INH to isonicotinic acid and hydrazine. Hydrazine is the proposed toxic metabolite of INH, which has been shown in animal studies to cause steatosis, hepatocyte vacuolation and glutathione depletion. Some studies have also shown that slow acetylators have a two-fold increased risk of developing antituberculosis drug-induced hepatotoxicity (ATDH) as compared with fast acetylators due to more available INH for direct hydrolysis to hydrazine. Theoretically, a similar reaction may occur with rifabutin and isoniazid. Additional risk factors for developing hepatotoxicity include patients with advanced age, malnutrition, existing hepatic impairment, daily alcohol consumption, female gender, HIV infection, extra-pulmonary tuberculosis and/or patients who are taking other potent CYP450-inducing agents.

MANAGEMENT: Caution and close monitoring should be considered if isoniazid (INH) is coadministered with rifampin or rifabutin. In cases where coadministration is required, careful monitoring of liver function, especially ALT and AST, should be done at baseline and then every 2 to 4 weeks during therapy, or in accordance with individual product labeling. Some manufacturers of INH recommend strongly considering its discontinuation if serum aminotransferase concentrations (AST or SGOT, ALT or SGPT) exceed 3 to 5 times the upper limit of normal. Product labeling for rifampin also recommends the immediate discontinuation of therapy if hepatic damage is suspected. INH product labeling suggests alternate drugs be used if hepatitis is attributed to INH in patients with tuberculosis. However, if INH must be used, it should only be resumed after the patient's symptoms and laboratory abnormalities have cleared. It should also be restarted in very small, gradually increasing doses and immediately withdrawn if there is any indication of recurrent liver involvement. Patients should be counseled to immediately report signs or symptoms consistent with liver damage and notified that prodromal symptoms usually consist of fatigue, weakness, malaise, anorexia, nausea, and/or vomiting.

References

  1. O'Brien RJ, Long MW, Cross FS, et al. "Hepatotoxicity from isoniazid and rifampin among children treated for tuberculosis." Pediatrics 72 (1983): 491-9
  2. Kumar A, Misra PK, Mehotra R, et al. "Hepatotoxicity of rifampin and isoniazid." Am Rev Respir Dis 143 (1991): 1350-2
  3. Abadie-Kemmerly S, Pankey GA, Dalvisio JR "Failure of ketoconazole treatment of blastomyces dermatidis due to interaction of isoniazid and rifampin." Ann Intern Med 109 (1988): 844-5
  4. Acocella G, Bonollo L, Garimoldi M, et al. "Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease." Gut 13 (1972): 47-53
  5. Yamamoto T, Suou T, Hirayama C "Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype." Hepatology 6 (1986): 295-8
  6. Steele MA, Burk RF, Des Prez RM "Toxic hepatitis with isoniazid and rifampin." Chest 99 (1991): 465-71
  7. "Product Information. INH (isoniazid)." Ciba Pharmaceuticals, Summit, NJ.
  8. Sarma G, Immanuel C, Kailasam S, Narayana AS, Venkatesan P "Rifampin-induced release of hydrazine from isoniazid." Am Rev Respir Dis 133 (1986): 1072-5
  9. "Product Information. Mycobutin (rifabutin)." Pharmacia and Upjohn PROD (2001):
  10. "Product Information. Rifadin (rifampin)." Hoechst Marion Roussel PROD (2001):
  11. Askgaard DS, Wilcke T, Dossing M "Hepatotoxicity caused by the combined action of isoniazid and rifampicin." Thorax 50 (1995): 213-4
  12. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  13. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
  14. Cerner Multum, Inc. "Australian Product Information." O 0
  15. "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC. (2023):
  16. "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd (2023):
  17. "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB (2023):
  18. Sarma GR, Immanual C, Kailasam S, Narayana AS, Venkatesan P "Rifampin-induced release of hydrazine from isoniazid. A possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin https://pubmed.ncbi.nlm.nih.gov/3717759/" (2024):
  19. Tostmann A, Boeree MJ, Aarnoutse RE, De Lange WCM, Van Der Ven AJAM, Dekhuijzen R "Antituberculosis drug-induced hepatotoxicity: concise up-to-date review https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1746.2007.05207.x" (2024):
  20. "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc. (2021):
  21. "Product Information. Rifampin (rifAMPin)." Akorn Inc (2022):
  22. "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc (2022):
  23. "Product Information. Rifadin (rifampicin)." Sanofi (2023):
  24. "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd (2024):
  25. "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc. (2019):
View all 25 references

Switch to consumer interaction data

Moderate

rifAMPin buprenorphine

Applies to: IsonaRif (isoniazid / rifampin) and buprenorphine

MONITOR: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of buprenorphine, which is primarily metabolized by the isoenzyme. Reduced efficacy or withdrawal symptoms may occur in patients maintained on buprenorphine.

MANAGEMENT: Pharmacologic response to buprenorphine should be monitored more closely whenever a CYP450 3A4 inducer is added to or withdrawn from therapy, and the buprenorphine dosage adjusted as necessary.

References

  1. "Product Information. Buprenex (buprenorphine)." Reckitt and Colman Pharmaceuticals Inc PROD (2001):

Switch to consumer interaction data

Moderate

isoniazid buprenorphine

Applies to: IsonaRif (isoniazid / rifampin) and buprenorphine

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations and pharmacologic effects of buprenorphine, which is partially metabolized (approximately 30%) by the isoenzyme. The interaction appears to be dependent, in part, on the route of administration of buprenorphine. When administered transdermally, buprenorphine peak plasma concentration (Cmax) and systemic exposure (AUC) were not significantly affected by ketoconazole, a potent CYP450 3A4 inhibitor. However, it was reported in another study that ketoconazole increased the Cmax and AUC of buprenorphine (route unspecified) by approximately 70% and 50%, respectively, and to a lesser extent, of the metabolite norbuprenorphine. The interaction has also been reported with atazanavir/ritonavir. A case series describes three patients who experienced excessive opiate effects of buprenorphine during concomitant antiretroviral therapy with atazanavir, ritonavir, and various nucleoside reverse transcriptase inhibitors. Two of the patients had been on their antiretroviral regimen for several months and reported doped-up feeling, dizziness, and feeling high following initiation of buprenorphine 8 mg/day. The dosage was reduced to 8 mg every other day. One was maintained on this dosage while the other had dosage increased up to 12 mg/day, whereupon he developed hypersomnolence but managed to maintain that dosage. The third patient had been inducted with buprenorphine and titrated to a stable dose of 14 mg/day for two days prior to beginning antiretroviral therapy. The next day, the patient complained of daytime somnolence and decreased mental functioning. His buprenorphine dosage was decreased to 8 mg/day, and he developed tolerance to the sedative effects within 7 days.

MANAGEMENT: Caution is advised if buprenorphine is prescribed with CYP450 3A4 inhibitors. Induction with buprenorphine should begin at a reduced dosage, and dosage escalation should occur more slowly to allow for assessment of opiate effects and development of patient tolerance. In patients who are already stabilized on buprenorphine, pharmacologic response and vital signs should be monitored more closely whenever a CYP450 3A4 inhibitor is added to or withdrawn from therapy, and the buprenorphine dosage adjusted as necessary. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities. Patients should seek medical attention if potential signs and symptoms of toxicity occur such as dizziness, confusion, fainting, extreme sedation, bradycardia, slow or difficult breathing, and shortness of breath.

References

  1. "Product Information. Buprenex (buprenorphine)." Reckitt and Colman Pharmaceuticals Inc PROD (2001):

Switch to consumer interaction data

Drug and food interactions

Major

buprenorphine food

Applies to: buprenorphine

GENERALLY AVOID: Concomitant use of buprenorphine with benzodiazepines or other central nervous system (CNS) depressants (e.g., nonbenzodiazepine sedatives/hypnotics, anxiolytics, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol) may increase the risk of buprenorphine overdose, severe respiratory depression, coma, and death. Reported cases have primarily occurred in the setting of buprenorphine maintenance treatment for opiate addiction, and many, but not all, involved abuse or misuse of buprenorphine including intravenous self-injection. The mechanism of interaction probably involves some degree of additive pharmacologic effects. Preclinical studies also suggest that benzodiazepines can alter the usual ceiling effect on buprenorphine-induced respiratory depression and render the respiratory effects of buprenorphine appear similar to those of full opioid agonists. Coadministration of buprenorphine with some CNS depressants such as alcohol, benzodiazepines, and phenothiazines may also increase the risk of hypotension.

MANAGEMENT: The use of opioids in conjunction with benzodiazepines or other CNS depressants should generally be avoided unless alternative treatment options are inadequate. If coadministration is necessary, the dosage and duration of each drug should be limited to the minimum required to achieve desired clinical effect. Patients should be monitored closely for signs and symptoms of respiratory depression and sedation, and advised to avoid driving or operating hazardous machinery until they know how these medications affect them. Extreme caution is advised when prescribing buprenorphine to patients who are addicted to opioids and also abusing benzodiazepines or alcohol. Due to potential risk of overdose and death, dependence on sedative-hypnotics such as benzodiazepines or alcohol is considered a relative contraindication for office-based buprenorphine treatment of opioid addiction. For patients who have been receiving extended therapy with both an opioid and a benzodiazepine and require discontinuation of either medication, a gradual tapering of dose is advised, since abrupt withdrawal may lead to withdrawal symptoms. Severe cases of benzodiazepine withdrawal, primarily in patients who have received excessive doses over a prolonged period, may result in numbness and tingling of extremities, hypersensitivity to light and noise, hallucinations, and epileptic seizures.

References

  1. "Product Information. Suboxone (buprenorphine-naloxone)." Reckitt and Colman Pharmaceuticals Inc (2002):
  2. Kilicarslan T, Sellers EM "Lack of interaction of buprenorphine with flunitrazepam metabolism." Am J Psychiatry 157 (2000): 1164-6
  3. Reynaud M, Petit G, Potard D, Courty P "Six deaths linked to concomitant use of buprenorphine and benzodiazepines." Addiction 93 (1998): 1385-92
  4. Tracqui A, Kintz P, Ludes B "Buprenorphine-related deaths among drug addicts in France: a report on 20 fatalities." J Anal Toxicol 22 (1998): 430-4
  5. Reynaud M, Tracqui A, Petit G, Potard D, Courty P "Six deaths linked to misuse of buprenorphine-benzodiazepine combinations." Am J Psychiatry 155 (1998): 448-9
  6. Kintz P "A new series of 13 buprenorphine-related deaths." Clin Biochem 35 (2002): 513-6
  7. Martin HA "The possible consequences of combining lorazepam and buprenorphine/naloxone: a case review." J Emerg Nurs 37 (2011): 200-2
  8. Hakkinen M, Launiainen T, Vuori E, Ojanpera I "Benzodiazepines and alcohol are associated with cases of fatal buprenorphine poisoning." Eur J Clin Pharmacol 68 (2012): 301-9
  9. Substance Abuse and Mental Health Services Administration (US) "Clinical Guidelines for the Use of Buprenorphine in the Treatment of Opioid Addiction. Treatment Improvement Protocol (TIP) Series, No. 40 http://www.ncbi.nlm.nih.gov/books/NBK64245/" (2013):
  10. Schuman-Olivier Z, Hoeppner BB, Weiss RD, Borodovsky J, Shaffer HJ, Albanese MJ "Benzodiazepine use during buprenorphine treatment for opioid dependence: clinical and safety outcomes." Drug Alcohol Depend 132 (2013): 580-6
  11. Ferrant O, Papin F, Clin B, et al. "Fatal poisoning due to snorting buprenorphine and alcohol consumption." Forensic Sci Int 204 (2011): e8-11
  12. Pirnay S, Borron SW, Giudicelli CP, Tourneau J, Baud FJ, Ricordel I "A critical review of the causes of death among post-morten toxicological investigations: analysis of 34 buprenorphine-associated and 35 methadone-associated deaths." Addiction 99 (2004): 978-88
  13. Kintz P "Deaths involving buprenorphine: a compendium of French cases." Forensic Sci Int 121 (2001): 65-9
  14. Sekar M, Mimpriss TJ "Buprenorphine, benzodiazepines and prolonged respiratory depression." Anaesthesia 42 (1987): 567-8
  15. Gueye PN, Borron SW, Risede P, et al. "Buprenorphine and midazolalm act in combination to depress respiration in rats." Toxicol Sci 65 (2002): 107-14
  16. US Food and Drug Administration "FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning. http://www.fda.gov/downloads/Drugs/DrugSafety/UCM518672.pdf" (2016):
View all 16 references

Switch to consumer interaction data

Moderate

rifAMPin food

Applies to: IsonaRif (isoniazid / rifampin)

GENERALLY AVOID: Concurrent use of rifampin in patients who ingest alcohol daily may result in an increased incidence of hepatotoxicity. The increase in hepatotoxicity may be due to an additive risk as both alcohol and rifampin are individually associated with this adverse reaction. However, the exact mechanism has not been established.

ADJUST DOSING INTERVAL: Administration with food may reduce oral rifampin absorption, increasing the risk of therapeutic failure or resistance. In a randomized, four-period crossover phase I study of 14 healthy male and female volunteers, the pharmacokinetics of single dose rifampin 600 mg were evaluated under fasting conditions and with a high-fat meal. Researchers observed that administration of rifampin with a high-fat meal reduced rifampin peak plasma concentration (Cmax) by 36%, nearly doubled the time to reach peak plasma concentration (Tmax) but reduced overall exposure (AUC) by only 6%.

MANAGEMENT: The manufacturer of oral forms of rifampin recommends administration on an empty stomach, 30 minutes before or 2 hours after meals. Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and rifampin concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with rifampin.

References

  1. "Product Information. Rifampin (rifAMPin)." Akorn Inc (2022):
  2. "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc (2022):
  3. "Product Information. Rifadin (rifampicin)." Sanofi (2023):
  4. "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd (2024):
  5. Peloquin CA, Namdar R, Singleton MD, Nix DE "Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids https://pubmed.ncbi.nlm.nih.gov/9925057/" (2024):
  6. "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc. (2019):
View all 6 references

Switch to consumer interaction data

Moderate

isoniazid food

Applies to: IsonaRif (isoniazid / rifampin)

GENERALLY AVOID: Concurrent use of isoniazid (INH) in patients who ingest alcohol daily may result in an increased incidence of both hepatotoxicity and peripheral neuropathy. The increase in hepatotoxicity may be due to an additive risk as both alcohol and INH are individually associated with this adverse reaction. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of acetylation is genetically determined and generally classified as slow or rapid. Slow acetylators have been identified by some studies as having a higher risk of hepatotoxicity; therefore, this interaction may be more significant for patients who fall into this category. Other studies have postulated that alcohol-mediated CYP450 2E1 induction may play a role, as this isoenzyme is involved in INH metabolism and may be responsible for producing hepatotoxic metabolites. However, available literature is conflicting. The labeling for some INH products lists daily alcohol use or chronic alcoholism as a risk factor for hepatitis, but not all studies have found a significant association between alcohol use and INH-induced hepatotoxicity. Additionally, INH and alcohol are both associated with pyridoxine (B6) deficiency, which may increase the risk of peripheral neuropathy.

GENERALLY AVOID: Concomitant administration of isoniazid (INH) with foods containing tyramine and/or histamine may increase the risk of symptoms relating to tyramine- and/or histamine toxicity (e.g., headache, diaphoresis, flushing, palpitations, and hypotension). The proposed mechanism is INH-mediated inhibition of monoamine oxidase (MAO) and diamine oxidase (DAO), enzymes responsible for the metabolism of tyramine and histamine, respectively. Some authors have suggested that the reactions observed are mainly due to INH's effects on DAO instead of MAO or the amounts of histamine instead of tyramine present in the food. A Japanese case report recorded an example in 8 out of 25 patients on the tuberculosis ward who developed an accidental histamine poisoning after ingesting a fish paste (saury). Patients developed allergy-like symptoms, which started between 20 minutes and 2 hours after ingesting the food. A high-level of histamine (32 mg/100 g of fish) was confirmed in the saury paste and all 8 patients were both on INH and had reduced MAO concentrations. The 17 remaining patients were not on INH (n=5) or reported not eating the saury paste (n=12).

ADJUST DOSING INTERVAL: Administration with food significantly reduces oral isoniazid (INH) absorption, increasing the risk of therapeutic failure or resistance. The mechanism is unknown. Pharmacokinetic studies completed in both healthy volunteers (n=14) and tuberculosis patients (n=20 treatment-naive patients during days 1 to 3 of treatment) have resulted in almost doubling the time to reach INH's maximum concentration (tmax) and a reduction in isoniazid's maximum concentration (Cmax) of 42%-51% in patients who consumed high-fat or high-carbohydrate meals prior to INH treatment.

MANAGEMENT: The manufacturer of oral forms of isoniazid (INH) recommends administration on an empty stomach (i.e., 30 minutes before or 2 hours after meals). Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and INH concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with INH. Concomitant pyridoxine (B6) administration is also recommended to reduce the risk of peripheral neuropathy, with some authorities suggesting a dose of at least 10 mg/day. Patients should be advised to avoid foods containing tyramine (e.g., aged cheese, cured meats such as sausages and salami, fava beans, sauerkraut, soy sauce, beer, or red wine) or histamine (e.g., skipjack, tuna, mackerel, salmon) during treatment with isoniazid. Consultation of product labeling for combination products containing isoniazid and/or relevant guidelines may be helpful for more specific recommendations.

References

  1. Smith CK, Durack DT "Isoniazid and reaction to cheese." Ann Intern Med 88 (1978): 520-1
  2. Dimartini A "Isoniazid, tricyclics and the ''cheese reaction''." Int Clin Psychopharmacol 10 (1995): 197-8
  3. Uragoda CG, Kottegoda SR "Adverse reactions to isoniazid on ingestion of fish with a high histamine content." Tubercle 58 (1977): 83-9
  4. Self TH, Chrisman CR, Baciewicz AM, Bronze MS "Isoniazid drug and food interactions." Am J Med Sci 317 (1999): 304-11
  5. "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India) 2 (2021):
  6. "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC. (2023):
  7. "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd (2023):
  8. "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB (2023):
  9. Saukkonen JJ, Cohn DL, Jasmer RM, et al. "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med 174 (2006): 935-52
  10. Bouazzi OE, Hammi S, Bourkadi JE, et al. "First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/" (2024):
  11. Wang P, Pradhan K, Zhong XB, Ma X "Isoniazid metabolism and hepatoxicity." Acta Pharm Sin B 6 (2016): 384-92
  12. Saktiawati AM, Sturkenboom MG, Stienstra Y, et al. "Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment naive TB patients: a randomized cross-over trial." J Antimicrob Chemother 71 (2016): 703-10
  13. Hahn JA, Ngabirano C, Fatch R, et al. "Safety and tolerability of isoniazid preventive therapy for tuberculosis for persons with HIV with and without alcohol use." AIDS 37 (2023): 1535-43
  14. Huang YS, Chern HD, Su WJ, et al. "Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis." Hepatology 37 (2003): 924-30
  15. Sousou JM, Griffith EM, Marsalisi C, Reddy P "Pyridoxine deficiency and neurologic dysfunction: an unlikely association. https://www.cureus.com/articles/188310-pyridoxine-deficiency-and-neurologic-dysfunction-an-unlikely-association?score_article=true#!/" (2024):
  16. Miki M, Ishikawa T, Okayama H "An outbreak of histamine poisoning after ingestion of the ground saury paste in eight patients taking isoniazid in tuberculous ward." Intern Med 44 (2005): 1133-6
  17. "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc. (2021):
View all 17 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.