Drug Interactions between bupivacaine / lidocaine / triamcinolone and erlotinib
This report displays the potential drug interactions for the following 2 drugs:
- bupivacaine/lidocaine/triamcinolone
- erlotinib
Interactions between your drugs
lidocaine BUPivacaine
Applies to: bupivacaine / lidocaine / triamcinolone and bupivacaine / lidocaine / triamcinolone
GENERALLY AVOID: Additive toxicities may occur when bupivacaine is coadministered with other local anesthetics. The potential for increased risk of systemic toxicities such as methemoglobinemia and central nervous system and cardiovascular adverse reactions should be recognized.
MANAGEMENT: Additional use of local anesthetics should generally be avoided within 96 hours following administration of bupivacaine. If coadministration cannot be avoided, overall local anesthetic exposure through 72 hours must be considered in addition to monitoring for the development of methemoglobinemia as well as central nervous system and cardiovascular adverse reactions. Signs and symptoms of methemoglobinemia may be delayed some hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia such as slate-grey cyanosis in buccal mucous membranes, lips, and nail beds; nausea; headache; dizziness; lightheadedness; lethargy; fatigue; dyspnea; tachypnea; tachycardia; palpitation; anxiety; and confusion. In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, shock, coma, and death. Early warning signs of central nervous system toxicity may include restlessness, anxiety, incoherent speech, dizziness, lightheadedness, numbness and tingling of the mouth and lips, metallic taste, tinnitus, blurred vision, tremors, twitching, depression, and drowsiness. Cardiovascular toxicity may include atrioventricular block, ventricular arrhythmias, cardiac arrest, and decreased cardiac output and arterial blood pressure due to depressed cardiac conductivity, excitability, and myocardial contractility. Patients should have cardiovascular and respiratory vital signs and state of consciousness constantly monitored while under treatment.
References (3)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2021) "Product Information. Zynrelef (bupivacaine-meloxicam)." Heron Therapeutics
triamcinolone erlotinib
Applies to: bupivacaine / lidocaine / triamcinolone and erlotinib
MONITOR: Coadministration of erlotinib with anti-angiogenic agents, corticosteroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and/or taxane-based chemotherapy may increase the risk of gastrointestinal (GI) perforation. Erlotinib treatment has been associated with an increased risk of developing gastrointestinal (GI) perforation, including fatal cases. Patients with a prior history of peptic ulceration or diverticular disease may also have an increased risk. In three lung cancer studies with erlotinib monotherapy and a pancreatic cancer study with erlotinib plus gemcitabine, the incidence of gastrointestinal perforation in patients treated with erlotinib was 0.2% and 0.4%, respectively, compared to 0.1% and 0% in the control arms. Cases of GI bleeding have also been reported with concomitant administration of NSAIDs.
MANAGEMENT: Caution is recommended when using erlotinib in patients with a history of peptic ulceration or diverticular disease and in patients receiving concomitant treatment with drugs associated with an increased risk of GI perforation such as anti-angiogenic agents, corticosteroids, NSAIDs, and taxane-based chemotherapy. Patients should be advised to contact their healthcare provider if they experience signs and symptoms of GI perforation such as severe abdominal pain, fever, chills, nausea, or vomiting. The manufacturer recommends that erlotinib should be permanently discontinued in patients who develop gastrointestinal perforation.
References (7)
- Strate LL, Liu YL, Huang ES, Giovannucci EL, Chan AT (2011) "Use of aspirin or nonsteroidal anti-inflammatory drugs increases risk for diverticulitis and diverticular bleeding." Gastroenterology, 140, p. 1427-33
- Medicines and Healthcare products Regulatory Agency (2020) Baricitinib (Olumiant¥): increased risk of diverticulitis, particularly in patients with risk factors. https://www.gov.uk/drug-safety-update/baricitinib-olumiant-increased-risk-of-diverticulitis-particularly-in-patients-with-risk-factors
- (2018) "Product Information. Tarceva (erlotinib)." Genentech
- (2018) "Product Information. Tarceva (erlotinib)." Hoffmann-La Roche Limited
- (2022) "Product Information. Tarceva (erlotinib)." Roche Products Ltd
- (2022) "Product Information. Tarceva (erlotinib)." Roche Products Pty Ltd
- Hoisnard L, Lebrun-Vignes B, Maury S, et al. (2022) "Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database." Sci Rep, 12, p. 7140
Drug and food interactions
lidocaine food
Applies to: bupivacaine / lidocaine / triamcinolone
MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.
MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.
MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.
References (7)
- Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
- (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
- (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
- (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
- (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
- Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
- Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
erlotinib food
Applies to: erlotinib
GENERALLY AVOID: Grapefruit and grapefruit juice may increase the plasma concentrations of erlotinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for ketoconazole, a potent CYP450 3A4 inhibitor that increased erlotinib systemic exposure (AUC) by 67%. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition.
GENERALLY AVOID: Cigarette smoking reduces erlotinib exposure due to induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of erlotinib. Induction of CYP450 1A1 in the lungs may also contribute. In one pharmacokinetic study of healthy subjects given a single 150 mg dose of erlotinib, mean erlotinib peak plasma concentration (Cmax), systemic exposure (AUC) and plasma concentration at 24 hours were decreased by 35%, 64% and 88%, respectively, in current smokers compared to former/never smokers. Likewise, in a phase 3 non-small cell lung cancer (NSCLC) trial, the steady-state trough plasma concentrations of erlotinib in current smokers were approximately 2-fold less than in former/never smokers, accompanied by a 24% increase in apparent erlotinib plasma clearance. In a phase 1 dose-escalation study that analyzed the steady-state pharmacokinetics of erlotinib in current smokers with NSCLC, there was a dose-proportional increase in erlotinib exposure when the dose was increased from 150 mg to 300 mg, the maximum tolerated dose in the study population. Median steady-state trough plasma concentration at the 300 mg dose was approximately 3-fold higher than at the 150 mg dose. The clinical impact of smoking on erlotinib efficacy has not been studied.
ADJUST DOSING INTERVAL: Food enhances the oral absorption of erlotinib. According to the product labeling, administration with food increased the oral bioavailability of erlotinib from approximately 60% to almost 100% compared to administration in the fasting state.
MANAGEMENT: Consumption of grapefruit and grapefruit juice should be avoided or limited during treatment with erlotinib. Patients who currently smoke cigarettes are advised to stop smoking as soon as possible. If cigarette smoking is continued while taking erlotinib, the manufacturer recommends increasing the dosage of erlotinib by 50 mg increments at 2-week intervals up to a maximum of 300 mg as tolerated. However, the efficacy and long-term safety of dosages higher than 150 mg daily have not been established. Data from a double-blind, randomized phase 3 study (MO22162, CURRENTS) demonstrated no benefit in progression free survival or overall survival with an erlotinib dosage of 300 mg daily relative to the recommended dosage of 150 mg daily in active smokers (average of 38 pack years) with locally advanced or metastatic NSCLC who have failed chemotherapy, although patients in the study were not selected based on epidermal growth factor receptor (EGFR) mutation status. Safety data were comparable between the two dosages, but a numerical increase in the incidence of rash, interstitial lung disease and diarrhea was observed with the higher dosage. Patients who have received a dosage increase should immediately revert to the recommended dosage of 150 mg or 100 mg once daily (depending on indication) upon cessation of smoking. Erlotinib should be administered on an empty stomach at least one hour before or two hours after the ingestion of food.
References (4)
- (2018) "Product Information. Tarceva (erlotinib)." Genentech
- (2018) "Product Information. Tarceva (erlotinib)." Hoffmann-La Roche Limited
- (2022) "Product Information. Tarceva (erlotinib)." Roche Products Ltd
- (2022) "Product Information. Tarceva (erlotinib)." Roche Products Pty Ltd
lidocaine food
Applies to: bupivacaine / lidocaine / triamcinolone
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.