Drug Interactions between bupivacaine / fentanyl and trimethoprim
This report displays the potential drug interactions for the following 2 drugs:
- bupivacaine/fentanyl
- trimethoprim
Interactions between your drugs
trimethoprim BUPivacaine
Applies to: trimethoprim and bupivacaine / fentanyl
MONITOR: Coadministration of local anesthetics with other oxidizing agents that can also induce methemoglobinemia such as antimalarials (e.g., chloroquine, quinine), nitrates and nitrites, sulfonamides, aminosalicylic acid, dimethyl sulfoxide (DMSO), metoclopramide, nitrofurantoin, phenazopyridine, phenobarbital, and phenytoin may increase the risk. Additional risk factors include very young age (e.g., infants less than 6 months), cardiac or pulmonary disease, genetic predisposition, and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Data surrounding the incidence of methemoglobinemia are agent-specific and, in many instances, have primarily been reported in case reports and/or in overdose situations.
MANAGEMENT: Monitoring for signs and symptoms of methemoglobinemia is recommended if local anesthetics must be used with other methemoglobin-inducing agents. Signs and symptoms of methemoglobinemia may occur immediately or hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia (e.g., cyanotic skin discoloration, abnormal blood coloration, nausea, headache, dizziness, lightheadedness, lethargy, fatigue, dyspnea, tachypnea, tachycardia, palpitation, anxiety, and confusion). In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, shock, coma, and death. Methemoglobinemia should be considered if central cyanosis is unresponsive to oxygen. Calculated oxygen saturation and pulse oximetry are generally not accurate in the setting of methemoglobinemia. The diagnosis can be confirmed by an elevated methemoglobin level of at least 10% using co-oximetry. Methemoglobin concentrations greater than 10% of total hemoglobin will typically cause cyanosis, and levels over 70% are frequently fatal. However, symptom severity is not always related to methemoglobin levels. Experts suggest that treatment of methemoglobinemia varies from supplemental oxygen and symptom support to the administration of methylene blue, depending on severity of symptoms and/or the presence of G6PD deficiency. Institutional guidelines and/or individual product labeling should be consulted for further guidance.
References (4)
- (2008) "Product Information. Marcaine HCl (bupivacaine)." Hospira Inc
- Guay J (2009) "Methemoglobinemia related to local anesthetics: a summary of 242 episodes." Anesth Analg, 108, p. 837-45
- Skold A, Cosco DL, Klein R (2011) "Methemoglobinemia: pathogenesis, diagnosis, and management." South Med J, 104, p. 757-61
- (2021) "Product Information. Zynrelef (bupivacaine-meloxicam)." Heron Therapeutics
Drug and food interactions
fentaNYL food
Applies to: bupivacaine / fentanyl
GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including fentanyl. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.
GENERALLY AVOID: Consumption of grapefruit juice during treatment with oral transmucosal formulations of fentanyl may result in increased plasma concentrations of fentanyl, which is primarily metabolized by CYP450 3A4 isoenzyme in the liver and intestine. Certain compounds present in grapefruit are known to inhibit CYP450 3A4 and may increase the bioavailability of swallowed fentanyl (reportedly up to 75% of a dose) and/or decrease its systemic clearance. The clinical significance is unknown. In 12 healthy volunteers, consumption of 250 mL regular-strength grapefruit juice the night before and 100 mL double-strength grapefruit juice one hour before administration of oral transmucosal fentanyl citrate (600 or 800 mcg lozenge) did not significantly affect fentanyl pharmacokinetics, overall extent of fentanyl-induced miosis (miosis AUC), or subjective self-assessment of various clinical effects compared to control. However, pharmacokinetic alterations associated with interactions involving grapefruit juice are often subject to a high degree of interpatient variability. The possibility of significant interaction in some patients should be considered.
MANAGEMENT: Patients should not consume alcoholic beverages or use drug products that contain alcohol during treatment with fentanyl. Any history of alcohol or illicit drug use should be considered when prescribing fentanyl, and therapy initiated at a lower dosage if necessary. Patients should be closely monitored for signs and symptoms of sedation, respiratory depression, and hypotension. Due to a high degree of interpatient variability with respect to grapefruit juice interactions, patients treated with fentanyl should preferably avoid the consumption of grapefruit and grapefruit juice. In addition, patients receiving transdermal formulations of fentanyl should be cautioned that drug interactions and drug effects may be observed for a prolonged period beyond removal of the patch, as significant amounts of fentanyl are absorbed from the skin for 17 hours or more after the patch is removed.
References (5)
- "Product Information. Duragesic Transdermal System (fentanyl)." Janssen Pharmaceutica, Titusville, NJ.
- (2001) "Product Information. Actiq (fentanyl)." Abbott Pharmaceutical
- Kharasch ED, Whittington D, Hoffer C (2004) "Influence of Hepatic and Intestinal Cytochrome P4503A Activity on the Acute Disposition and Effects of Oral Transmucosal Fentanyl Citrate." Anesthesiology, 101, p. 729-737
- Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M (1996) "Identification of human cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation." Anesth Analg, 82, p. 167-72
- Labroo RB, Paine MF, Thummel KE, Kharasch ED (1997) "Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implicaitons for interindividual variability in disposition, efficacy, and drug interactions." Drug Metab Dispos, 25, p. 1072-80
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.