Drug Interactions between budesonide / formoterol and fexinidazole
This report displays the potential drug interactions for the following 2 drugs:
- budesonide/formoterol
- fexinidazole
Interactions between your drugs
budesonide fexinidazole
Applies to: budesonide / formoterol and fexinidazole
MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the systemic bioavailability of budesonide, which undergoes extensive first-pass and systemic metabolism via intestinal and hepatic CYP450 3A4. In pharmacokinetic studies, 6- to 8-fold increases in budesonide systemic exposure (AUC) have been observed during coadministration of the potent CYP450 3A4 inhibitor ketoconazole with different oral formulations of budesonide. When ketoconazole was administered 12 hours after budesonide in one study, the AUC increase was approximately half that reported during simultaneous administration. In a prospective study of a cystic fibrosis center patient population, 11 of 25 patients receiving high-dose itraconazole (400 to 600 mg/day) and budesonide oral inhalation therapy (800 to 1600 mcg/day) were found to have adrenal insufficiency, including one who developed Cushing's syndrome, compared to none in a group of 12 patients treated with itraconazole alone. There was also no adrenal insufficiency in a group of 30 cystic fibrosis patients retrospectively included as controls, 24 of whom had been treated with high-dose inhaled budesonide for several years. Adrenal function improved, but did not normalize, in 10 of the 11 patients during a follow-up of two to ten months after discontinuation of itraconazole and institution of hydrocortisone replacement therapy. Limited pharmacokinetic data indicate that itraconazole (200 mg once daily) may increase the plasma levels of budesonide by about 4-fold following inhalation of a single 1000 mcg dose, which may be mainly due to increased bioavailability of the swallowed portion of the dose.
MANAGEMENT: The possibility of increased systemic adverse effects of budesonide should be considered during coadministration with CYP450 3A4 inhibitors. If concomitant use cannot be avoided, the dosing times between budesonide and the CYP450 3A4 inhibitor should be separated by as much as possible. In addition, the lowest effective dosage of budesonide should be prescribed, and further adjustments made as necessary according to therapeutic response and tolerance. Patients should be monitored for signs and symptoms of hypercorticism such as acne, striae, thinning of the skin, easy bruising, moon facies, dorsocervical "buffalo" hump, truncal obesity, increased appetite, acute weight gain, edema, hypertension, hirsutism, hyperhidrosis, proximal muscle wasting and weakness, glucose intolerance, exacerbation of preexisting diabetes, depression, and menstrual disorders. Other systemic glucocorticoid effects may include adrenal suppression, immunosuppression, posterior subcapsular cataracts, glaucoma, bone loss, and growth retardation in children and adolescents.
References (16)
- Jonsson G, Astrom A, Andersson P (1995) "Budesonide is metabolized by cytochrome P450 3A (CYP3A) enzymes in human liver." Drug Metab Dispos, 23, p. 137-42
- (2001) "Product Information. Entocort (budesonide)." AstraZeneca Pharma Inc
- Raaska K, Niemi M, Neuvonen M, Neuvonen PJ, Kivisto KT (2002) "Plasma concentrations of inhaled budesonide and its effects on plasma cortisol are increased by the cytochrome P4503A4 inhibitor itraconazole." Clin Pharmacol Ther, 72, p. 362-369
- Main KM, Skov M, Sillesen IB, et al. (2002) "Cushing's syndrome due to pharmacological interaction in a cystic fibrosis patient." Acta Paediatr, 91, p. 1008-11
- Skov M, Main KM, Sillesen IB, Muller J, Koch C, Lanng S (2002) "Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide." Eur Respir J, 20, p. 127-33
- De Wachter E, Vanbesien J, De Schutter I, Malfroot A, De Schepper J (2003) "Rapidly developing Cushing syndrome in a 4-year-old patient during combined treatment with itraconazole and inhaled budesonide." Eur J Pediatr
- Bolland MJ, Bagg W, Thomas MG, Lucas JA, Ticehurst R, Black PN (2004) "Cushing's syndrome due to interaction between inhaled corticosteroids and itraconazole." Ann Pharmacother, 38, p. 46-9
- Edsbacker S, Andersson T (2004) "Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn's disease." Clin Pharmacokinet, 43, p. 803-21
- De Wachter E, Malfroot A, De Schutter I, Vanbesien J, De Schepper J (2003) "Inhaled budesonide induced Cushing's syndrome in cystic fibrosis patients, due to drug inhibition of cytochrome P450." J Calif Dent Assoc, 2, p. 72-5
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- Molimard M, Girodet PO, Pollet C, et al. (2008) "Inhaled corticosteroids and adrenal insufficiency: prevalence and clinical presentation." Drug Saf, 31, p. 769-74
- Daveluy A, Raignoux C, Miremont-Salame G, et al. (2009) "Drug interactions between inhaled corticosteroids and enzymatic inhibitors." Eur J Clin Pharmacol
- Kedem E, Shahar E, Hassoun G, Pollack S (2010) "Iatrogenic Cushing's syndrome due to coadministration of ritonavir and inhaled budesonide in an asthmatic human immunodeficiency virus infected patient." J Asthma, 47, p. 830-1
- (2011) "Product Information. Victrelis (boceprevir)." Schering-Plough Corporation
- (2011) "Product Information. Incivek (telaprevir)." Vertex Pharmaceuticals
formoterol fexinidazole
Applies to: budesonide / formoterol and fexinidazole
MONITOR: Beta-2 adrenergic agonists can cause dose-related prolongation of the QT interval and potassium loss. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s). Clinically significant prolongation of QT interval and hypokalemia occur infrequently when beta-2 agonists are inhaled at normally recommended dosages. However, these effects may be more common when the drugs are administered systemically or when recommended dosages are exceeded.
MANAGEMENT: Caution is recommended if beta-2 agonists are used in combination with other drugs that can prolong the QT interval. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.
References (30)
- Whyte KF, Addis GJ, Whitesmith R, Reid JL (1987) "The mechanism of salbutamol-induced hypokalaemia." Br J Clin Pharmacol, 23, p. 65-71
- Larsson S, Svedmyr N (1977) "Bronchodilating effect and side effects of beta2- adrenoceptor stimulants by different modes of administration (tablets, metered aerosol, and combinations thereof). A study with salbutamol inasthmatics." Am Rev Respir Dis, 116, p. 861-9
- Hastwell G, Lambert BE (1978) "The effect of oral salbutamol on serum potassium and blood sugar." Br J Obstet Gynaecol, 85, p. 767-9
- (1981) "Hypokalaemia due to salbutamol overdosage." Br Med J (Clin Res Ed), 283, p. 500-1
- Kantola I, Tarssanen L (1986) "Hypokalemia from usual salbutamol dosage ." Chest, 89, p. 619-20
- Wong CS, Pavord ID, Williams J, Britton JR, Tattersfield AE (1990) "Bronchodilator, cardiovascular, and hypokalaemic effects of fenoterol, salbutamol, and terbutaline in asthma." Lancet, 336, p. 1396-9
- Gross TL, Sokol RJ (1980) "Severe hypokalemia and acidosis: a potential complication of beta- adrenergic treatment." Am J Obstet Gynecol, 138, p. 1225-6
- Clifton GD, Hunt BA, Patel RC, Burki NK (1990) "Effects of sequential doses of parenteral terbutaline on plasma levels of potassium and related cardiopulmonary responses." Am Rev Respir Dis, 141, p. 575-9
- Hurlbert BJ, Edelman JD, David K (1981) "Serum potassium levels during and after terbutaline." Anesth Analg, 60, p. 723-5
- Bengtsson B, Fagerstrom PO (1982) "Extrapulmonary effects of terbutaline during prolonged administration." Clin Pharmacol Ther, 31, p. 726-32
- Gelmont DM, Balmes JR, Yee A (1988) "Hypokalemia induced by inhaled bronchodilators." Chest, 94, p. 763-6
- Sanders JP, Potter DE, Ellis S, Bee DE, Grant JA (1977) "Metabolic and cardiovascular effects of carbuterol and metaproterenol." J Allergy Clin Immunol, 60, p. 174-9
- (2002) "Product Information. Proventil (albuterol)." Schering Corporation
- Windom H, Grainger J, Burgess C, Crane J, Pearce N, Beasley R (1990) "A comparison of the haemodynamic and hypokalaemic effects of inhaled pirbuterol and salbutamol." N Z Med J, 103, p. 259-61
- "Product Information. Serevent (salmeterol)." Glaxo Wellcome
- (2001) "Product Information. Maxair (pirbuterol)." 3M Pharmaceuticals
- Dickens GR, Mccoy RA, West R, Stapczynski JS, Clifton GD (1994) "Effect of nebulized albuterol on serum potassium and cardiac rhythm in patients with asthma or chronic obstructive pulmonary disease." Pharmacotherapy, 14, p. 729-33
- Tveskov C, Djurhuus MS, Klitgaard NAH, Egstrup K (1994) "Potassium and magnesium distribution, ECG changes, and ventricular ectopic beats during beta(2)-adrenergic stimulation with terbutaline in healthy subjects." Chest, 106, p. 1654-9
- Braden GL, vonOeyen PT, Germain MJ, Watson DJ, Haag BL (1997) "Ritodrine- and terbutaline-induced hypokalemia in preterm labor: Mechanisms and consequences." Kidney Int, 51, p. 1867-75
- Rakhmanina NY, Kearns GL, Farrar HC (1998) "Hypokalemia in an asthmatic child from abuse of albuterol metered dose inhaler." Pediatr Emerg Care, 14, p. 145-7
- (2001) "Product Information. Xopenex (levalbuterol)." Sepracor Inc
- (2001) "Product Information. Foradil (formoterol)." Novartis Pharmaceuticals
- Ferguson GT, Funck-Brentano C, Fischer T, Darken P, Reisner C (2003) "Cardiovascular Safety of Salmeterol in COPD." Chest, 123, p. 1817-24
- Milic M, Bao X, Rizos D, Liu F, Ziegler MG (2006) "Literature review and pilot studies of the effect of qt correction formulas on reported beta(2)-agonist-induced QTc prolongation." Clin Ther, 28, p. 582-90
- (2006) "Product Information. Brovana (arformoterol)." Sepracor Inc
- Lowe MD, Rowland E, Brown MJ, Grace AA (2001) "Beta(2) adrenergic receptors mediate important electrophysiological effects in human ventricular myocardium." Heart, 86, p. 45-51
- Sun ZH, Swan H, Vitasalo M, Toivonen L (1998) "Effects of epinephrine and phenylephrine on QT interval dispersion in congenital long QT syndrome." J Am Coll Cardiol, 31, p. 1400-5
- (2011) "Product Information. Arcapta Neohaler (indacaterol)." Novartis Pharmaceuticals
- (2013) "Product Information. Breo Ellipta (fluticasone-vilanterol)." GlaxoSmithKline
- (2014) "Product Information. Striverdi Respimat (olodaterol)." Boehringer Ingelheim
budesonide formoterol
Applies to: budesonide / formoterol and budesonide / formoterol
Although they are often combined in clinical practice, the concomitant use of beta-2 adrenergic agonists and corticosteroids may result in additive hypokalemic effects. Since beta-2 agonists can sometimes cause QT interval prolongation, the development of hypokalemia may potentiate the risk of ventricular arrhythmias including torsade de pointes. However, clinical data are limited, and the potential significance is unknown. Patients who are receiving systemic or nebulized formulations of beta-2 agonists, high dosages of inhaled beta-2 agonists, or systemic corticosteroid therapy may be at a greater risk of developing hypokalemia.
References (4)
- (2001) "Product Information. Foradil (formoterol)." Novartis Pharmaceuticals
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
Drug and food interactions
budesonide food
Applies to: budesonide / formoterol
GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations and systemic effects of orally administered budesonide. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. According to the manufacturer, the systemic exposure of oral budesonide approximately doubles after extensive intake of grapefruit juice.
MANAGEMENT: Patients receiving budesonide should avoid the regular consumption of grapefruits and grapefruit juice to prevent undue increases in plasma budesonide levels and systemic effects.
References (1)
- (2001) "Product Information. Entocort (budesonide)." AstraZeneca Pharma Inc
fexinidazole food
Applies to: fexinidazole
GENERALLY AVOID: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.
GENERALLY AVOID: The potential exists for pharmacodynamic interactions and/or toxicities between fexinidazole and herbal medicines and supplements. In addition, grapefruit and grapefruit juice may, theoretically, increase the plasma concentrations of fexinidazole and the risk of adverse effects. The mechanism is decreased clearance of fexinidazole due to inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.
ADJUST DOSING INTERVAL: Food significantly increases the oral absorption and bioavailability of fexinidazole. Compared with the fasted state, the systemic exposure (AUC) of fexinidazole and its metabolites (fexinidazole sulfoxide [M1], fexinidazole sulfone [M2]) were 4- to 5-fold higher following administration with food.
MANAGEMENT: To ensure maximal oral absorption, fexinidazole should be administered with food each day at about the same time of day (e.g., during or immediately after the main meal of the day). Coadministration of fexinidazole with grapefruit, grapefruit juice, or herbal medicines or supplements should be avoided. Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction and instructed to avoid alcoholic beverages and products containing alcohol or propylene glycol while using oral, intravenous, or vaginal preparations of a nitroimidazole. Alcoholic beverages should not be consumed for at least 48 hours after completion of fexinidazole therapy.
References (10)
- Giannini AJ, DeFrance DT (1983) "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol, 20, p. 509-15
- Alexander I (1985) "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract, 39, p. 292-3
- Harries DP, Teale KF, Sunderland G (1990) "Metronidazole and alcohol: potential problems." Scott Med J, 35, p. 179-80
- Edwards DL, Fink PC, Van Dyke PO (1986) "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm, 5, p. 999-1000
- (2002) "Product Information. Flagyl (metronidazole)." Searle
- Williams CS, Woodcock KR (2000) "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother, 34, p. 255-7
- Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP (2002) "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother, 36, p. 971-4
- Krulewitch CJ (2003) "An unexpected adverse drug effect." J Midwifery Womens Health, 48, p. 67-8
- (2004) "Product Information. Tindamax (tinidazole)." Presutti Laboratories Inc
- (2021) "Product Information. Fexinidazole (fexinidazole)." sanofi-aventis
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.