Skip to main content

Drug Interactions between Bronkometer and dexamethasone / ketorolac / moxifloxacin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

dexAMETHasone moxifloxacin

Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin

MONITOR CLOSELY: Concomitant administration of corticosteroids may potentiate the risk of tendinitis and tendon rupture associated with fluoroquinolone treatment. The mechanism is unknown. Tendinitis and tendon rupture have most frequently involved the Achilles tendon, although cases involving the rotator cuff (the shoulder), the hand, the biceps, and the thumb have also been reported. Some have required surgical repair or resulted in prolonged disability. Tendon rupture can occur during or up to several months after completion of fluoroquinolone therapy.

MANAGEMENT: Caution is recommended if fluoroquinolones are prescribed in combination with corticosteroids, particularly in patients with other concomitant risk factors (e.g., age over 60 years; recipient of kidney, heart, and/or lung transplant). Patients should be advised to stop taking the fluoroquinolone, avoid exercise and use of the affected area, and promptly contact their physician if they experience pain, swelling, or inflammation of a tendon. In general, fluoroquinolones should only be used to treat conditions that are proven or strongly suspected to be caused by bacteria and only if the benefits outweigh the risks.

References

  1. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  2. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  3. (2001) "Product Information. Avelox (moxifloxacin)." Bayer
  4. Khaliq Y, Zhanel GG (2003) "Fluoroquinolone-Associated Tendinopathy: A Critical Review of the Literature." Clin Infect Dis, 36, p. 1404-1410
  5. van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HM, Rowlands S, Stricker BH (2003) "Increased risk of achilles tendon rupture with quinolone antibacterial use, especially in elderly patients taking oral corticosteroids." Arch Intern Med, 163, p. 1801-7
  6. FDA. U.S. Food and Drug Administration (2008) Information for Healthcare Professionals. Fluoroquinolone Antimicrobial Drugs. FDA Alert [7/8/2008]. http://www.fda.gov/cder/drug/InfoSheets/HCP/fluoroquinolonesHCP.htm
  7. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
View all 7 references

Switch to consumer interaction data

Moderate

dexAMETHasone ketorolac

Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin

MONITOR: The combined use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. In a large, case-control study of elderly patients, those who used corticosteroids and NSAIDs concurrently had an estimated relative risk (RR) for peptic ulcer disease and GI hemorrhage of 14.6 compared to those who used neither. Corticosteroid use was associated with a doubling of the risk (estimated RR = 2.0), but the risk was confined to those who also used NSAIDs. It is possible that both categories of agents are ulcerogenic and have additive effects on the GI mucosa during coadministration. Some investigators have also suggested that the primary effect of corticosteroids in this interaction is to delay healing of erosions caused by NSAIDs rather than cause de novo ulcerations.

MANAGEMENT: Caution is advised if corticosteroids and NSAIDs are used together, especially in patients with a prior history of peptic ulcer disease or GI bleeding and in elderly and debilitated patients. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as severe abdominal pain, dizziness, lightheadedness, and the appearance of black, tarry stools. The selective use of prophylactic anti-ulcer therapy (e.g., antacids, H2-antagonists) may be considered.

References

  1. Stewart JT, Pennington CR, Pringle R (1985) "Anti-inflammatory drugs and bowel perforations and haemorrhage." Br Med J, 290, p. 787-8
  2. Thomas TP (1984) "The complications of systemic corticosteroid therapy in the elderly." Gerontology, 30, p. 60-5
  3. Messer J, Reitman D, Sacks HS, et al. (1983) "Association of adrenocorticosteroid therapy and peptic-ulcer disease." N Engl J Med, 309, p. 21-4
  4. ReMine SG, McIlrath DC (1980) "Bowel perforation in steroid-treated patients." Ann Surg, 192, p. 581-6
  5. Levy M, Miller DR, Kaufman DW, Siskind V, Schwingl P, Rosenberg L, Strom B, Shapiro S (1988) "Major upper gastrointestinal tract bleeding. Relation to the use of aspirin and other nonnarcotic analgesics." Arch Intern Med, 148, p. 281-5
  6. Kaufman DW, Kelly JP, Sheehan JE, Laszlo A, Wiholm BE, Alfredsson L, Koff RS, Shapiro S (1993) "Nonsteroidal anti-inflammatory drug use in relation to major upper gastrointestinal bleeding." Clin Pharmacol Ther, 53, p. 485-94
  7. Wilcox CM, Shalek KA, Cotsonis G (1994) "Striking prevalence of over-the-counter nonsteroidal anti- inflammatory drug use in patients with upper gastrointestinal hemorrhage." Arch Intern Med, 154, p. 42-6
  8. Cantu TG, Lipani JA (1995) "Gastrointestinal ulceration with NSAIDs." Am J Med, 99, p. 440-1
  9. Sacanella E, Munoz F, Cardellach F, Estruch R, Miro O, Urbanomarquez A (1996) "Massive haemorrhage due to colitis secondary to nonsteroidal anti-inflammatory drugs." Postgrad Med J, 72, p. 57-8
  10. Buchman AL, Schwartz MR (1996) "Colonic ulceration associated with the systemic use of nonsteroidal antiinflammatory medication." J Clin Gastroenterol, 22, p. 224-6
  11. Piper JM, Ray WA, Daugherty JR, Griffin MR (1991) "Corticosteroid use and peptic ulcer disease: role of nonsteroidal ani-inflammatory drugs." Ann Intern Med, 114, p. 735-40
View all 11 references

Switch to consumer interaction data

Moderate

ketorolac moxifloxacin

Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin

MONITOR: Coadministration with nonsteroidal anti-inflammatory drugs (NSAIDs) may potentiate the risk of central nervous system toxicity sometimes associated with fluoroquinolone use. The interaction has been reported most often with enoxacin. It may occur with other fluoroquinolones as well, but is poorly documented. The exact mechanism of interaction is unknown. Some investigators suggest that the piperazine ring of fluoroquinolones may inhibit the binding of gamma-aminobutyric acid (GABA) to brain receptors and that NSAIDs may synergistically add to this effect. Patients with a history of seizures may be at greater risk.

MANAGEMENT: Clinical monitoring for signs of CNS stimulation such as tremors, involuntary muscle movements, hallucinations, or seizures is recommended if fluoroquinolone antibiotics are prescribed in combination with NSAIDs.

References

  1. Ball P (1986) "Ciprofloxacin: an overview of adverse experiences." J Antimicrob Chemother, 18, p. 187-93
  2. Hooper DC, Wolfson JS (1985) "The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans." Antimicrob Agents Chemother, 28, p. 716-21
  3. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  4. (2002) "Product Information. Penetrex (enoxacin)." Rhone Poulenc Rorer
  5. (2001) "Product Information. Floxin (ofloxacin)." Ortho McNeil Pharmaceutical
  6. Domagala JM (1994) "Structure-activity and structure-side-effect relationships for the quinolone antibacterials." J Antimicrob Chemother, 33, p. 685-706
  7. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  8. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  9. Davey PG (1988) "Overview of drug interactions with the quinolones." J Antimicrob Chemother, 22(suppl c), p. 97-107
  10. Ball P, Tillotson G (1996) "Tolerability of fluoroquinolone antibiotics: past, present and future." Drug Saf, 13, p. 343-8
  11. (2001) "Product Information. Avelox (moxifloxacin)." Bayer
  12. (2001) "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb
  13. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  14. Segev S. Rehavi M, Rubinstein E (1988) "Quinolones, theophylline, and diclofenac interactions with the gamma-aminobutyric acid receptor." Antimicrob Agents Chemother, 32, p. 1624-6
View all 14 references

Switch to consumer interaction data

Moderate

isoetharine moxifloxacin

Applies to: Bronkometer (isoetharine) and dexamethasone / ketorolac / moxifloxacin

MONITOR: Beta-2 adrenergic agonists can cause dose-related prolongation of the QT interval and potassium loss. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s). Clinically significant prolongation of QT interval and hypokalemia occur infrequently when beta-2 agonists are inhaled at normally recommended dosages. However, these effects may be more common when the drugs are administered systemically or when recommended dosages are exceeded.

MANAGEMENT: Caution is recommended if beta-2 agonists are used in combination with other drugs that can prolong the QT interval. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. Whyte KF, Addis GJ, Whitesmith R, Reid JL (1987) "The mechanism of salbutamol-induced hypokalaemia." Br J Clin Pharmacol, 23, p. 65-71
  2. Larsson S, Svedmyr N (1977) "Bronchodilating effect and side effects of beta2- adrenoceptor stimulants by different modes of administration (tablets, metered aerosol, and combinations thereof). A study with salbutamol inasthmatics." Am Rev Respir Dis, 116, p. 861-9
  3. Hastwell G, Lambert BE (1978) "The effect of oral salbutamol on serum potassium and blood sugar." Br J Obstet Gynaecol, 85, p. 767-9
  4. (1981) "Hypokalaemia due to salbutamol overdosage." Br Med J (Clin Res Ed), 283, p. 500-1
  5. Kantola I, Tarssanen L (1986) "Hypokalemia from usual salbutamol dosage ." Chest, 89, p. 619-20
  6. Wong CS, Pavord ID, Williams J, Britton JR, Tattersfield AE (1990) "Bronchodilator, cardiovascular, and hypokalaemic effects of fenoterol, salbutamol, and terbutaline in asthma." Lancet, 336, p. 1396-9
  7. Gross TL, Sokol RJ (1980) "Severe hypokalemia and acidosis: a potential complication of beta- adrenergic treatment." Am J Obstet Gynecol, 138, p. 1225-6
  8. Clifton GD, Hunt BA, Patel RC, Burki NK (1990) "Effects of sequential doses of parenteral terbutaline on plasma levels of potassium and related cardiopulmonary responses." Am Rev Respir Dis, 141, p. 575-9
  9. Hurlbert BJ, Edelman JD, David K (1981) "Serum potassium levels during and after terbutaline." Anesth Analg, 60, p. 723-5
  10. Bengtsson B, Fagerstrom PO (1982) "Extrapulmonary effects of terbutaline during prolonged administration." Clin Pharmacol Ther, 31, p. 726-32
  11. Gelmont DM, Balmes JR, Yee A (1988) "Hypokalemia induced by inhaled bronchodilators." Chest, 94, p. 763-6
  12. Sanders JP, Potter DE, Ellis S, Bee DE, Grant JA (1977) "Metabolic and cardiovascular effects of carbuterol and metaproterenol." J Allergy Clin Immunol, 60, p. 174-9
  13. (2002) "Product Information. Proventil (albuterol)." Schering Corporation
  14. Windom H, Grainger J, Burgess C, Crane J, Pearce N, Beasley R (1990) "A comparison of the haemodynamic and hypokalaemic effects of inhaled pirbuterol and salbutamol." N Z Med J, 103, p. 259-61
  15. "Product Information. Serevent (salmeterol)." Glaxo Wellcome
  16. (2001) "Product Information. Maxair (pirbuterol)." 3M Pharmaceuticals
  17. Dickens GR, Mccoy RA, West R, Stapczynski JS, Clifton GD (1994) "Effect of nebulized albuterol on serum potassium and cardiac rhythm in patients with asthma or chronic obstructive pulmonary disease." Pharmacotherapy, 14, p. 729-33
  18. Tveskov C, Djurhuus MS, Klitgaard NAH, Egstrup K (1994) "Potassium and magnesium distribution, ECG changes, and ventricular ectopic beats during beta(2)-adrenergic stimulation with terbutaline in healthy subjects." Chest, 106, p. 1654-9
  19. Braden GL, vonOeyen PT, Germain MJ, Watson DJ, Haag BL (1997) "Ritodrine- and terbutaline-induced hypokalemia in preterm labor: Mechanisms and consequences." Kidney Int, 51, p. 1867-75
  20. Rakhmanina NY, Kearns GL, Farrar HC (1998) "Hypokalemia in an asthmatic child from abuse of albuterol metered dose inhaler." Pediatr Emerg Care, 14, p. 145-7
  21. (2001) "Product Information. Xopenex (levalbuterol)." Sepracor Inc
  22. (2001) "Product Information. Foradil (formoterol)." Novartis Pharmaceuticals
  23. Ferguson GT, Funck-Brentano C, Fischer T, Darken P, Reisner C (2003) "Cardiovascular Safety of Salmeterol in COPD." Chest, 123, p. 1817-24
  24. Milic M, Bao X, Rizos D, Liu F, Ziegler MG (2006) "Literature review and pilot studies of the effect of qt correction formulas on reported beta(2)-agonist-induced QTc prolongation." Clin Ther, 28, p. 582-90
  25. (2006) "Product Information. Brovana (arformoterol)." Sepracor Inc
  26. Lowe MD, Rowland E, Brown MJ, Grace AA (2001) "Beta(2) adrenergic receptors mediate important electrophysiological effects in human ventricular myocardium." Heart, 86, p. 45-51
  27. Sun ZH, Swan H, Vitasalo M, Toivonen L (1998) "Effects of epinephrine and phenylephrine on QT interval dispersion in congenital long QT syndrome." J Am Coll Cardiol, 31, p. 1400-5
  28. (2011) "Product Information. Arcapta Neohaler (indacaterol)." Novartis Pharmaceuticals
  29. (2013) "Product Information. Breo Ellipta (fluticasone-vilanterol)." GlaxoSmithKline
  30. (2014) "Product Information. Striverdi Respimat (olodaterol)." Boehringer Ingelheim
View all 30 references

Switch to consumer interaction data

Minor

dexAMETHasone isoetharine

Applies to: dexamethasone / ketorolac / moxifloxacin and Bronkometer (isoetharine)

Although they are often combined in clinical practice, the concomitant use of beta-2 adrenergic agonists and corticosteroids may result in additive hypokalemic effects. Since beta-2 agonists can sometimes cause QT interval prolongation, the development of hypokalemia may potentiate the risk of ventricular arrhythmias including torsade de pointes. However, clinical data are limited, and the potential significance is unknown. Patients who are receiving systemic or nebulized formulations of beta-2 agonists, high dosages of inhaled beta-2 agonists, or systemic corticosteroid therapy may be at a greater risk of developing hypokalemia.

References

  1. (2001) "Product Information. Foradil (formoterol)." Novartis Pharmaceuticals
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

ketorolac food

Applies to: dexamethasone / ketorolac / moxifloxacin

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Moderate

isoetharine food

Applies to: Bronkometer (isoetharine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.