Skip to main content

Drug Interactions between bisacodyl / polyethylene glycol 3350 / potassium chloride / sodium bicarbonate / sodium chloride and Valrelease

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

sodium bicarbonate bisacodyl

Applies to: bisacodyl / polyethylene glycol 3350 / potassium chloride / sodium bicarbonate / sodium chloride and bisacodyl / polyethylene glycol 3350 / potassium chloride / sodium bicarbonate / sodium chloride

ADJUST DOSING INTERVAL: By increasing gastric pH, antacids may reduce the resistance of the enteric coating of bisacodyl tablets, resulting in earlier release of bisacodyl and gastric irritation and dyspepsia.

MANAGEMENT: The administration of antacids and bisacodyl should be separated by at least one hour.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."

Switch to consumer interaction data

Moderate

bisacodyl polyethylene glycol 3350

Applies to: bisacodyl / polyethylene glycol 3350 / potassium chloride / sodium bicarbonate / sodium chloride and bisacodyl / polyethylene glycol 3350 / potassium chloride / sodium bicarbonate / sodium chloride

GENERALLY AVOID: Concomitant use of stimulant laxatives (e.g., bisacodyl, sodium picosulfate) may increase the risk of serious gastrointestinal adverse effects associated with certain osmotic laxatives (e.g., polyethylene glycol (PEG), oral sulfate solution), such as colonic mucosal ulcerations or ischemic colitis. There have been isolated case reports of ischemic colitis occurring with the use of PEG-based bowel cleansing products in combination with higher dosages of bisacodyl (usually greater than 10 mg). Bisacodyl can cause colonic ischemia due to transient reduction in splanchnic blood flow. When administered in conjunction with an osmotic laxative such as PEG, increased intramural pressure secondary to increased peristalsis may lead to ischemic colitis and perforation.

MANAGEMENT: The manufacturers for some osmotic bowel cleansing products recommend avoiding the concurrent use of stimulant laxatives. However, stimulant laxatives, in particular bisacodyl and sodium picosulfate, are sometimes used with PEG in certain bowel cleansing regimens to help reduce dose volume and improve patient tolerability and acceptance. Please consult individual product labeling for specific recommendations and guidance. Patients using osmotic bowel cleansing products and stimulant laxatives who present with sudden abdominal pain, rectal bleeding, or other symptoms of ischemic colitis should be evaluated promptly.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. Baudet JS, Castro V, Redondo I (2010) "Recurrent ischemic colitis induced by colonoscopy bowel lavage." Am J Gastroenterol, 105, p. 700-1
  4. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
  5. Ajani S, Hurt RT, Teeters DA, Bellmore LR (2012) "Ischaemic colitis associated with oral contraceptive and bisacodyl use." BMJ Case Rep, 2012
  6. (2016) "Product Information. MoviPrep (polyethylene glycol 3350 with electrolytes)." Physicians Total Care
  7. (2020) "Product Information. Plenvu (polyethylene glycol 3350 with electrolytes)." Bausch Health US (formerly Valeant Pharmaceuticals)
  8. (2022) "Product Information. GaviLyte-H and Bisacodyl with Flavor Packs (bisacodyl-PEG 3350 with electrolytes)." Gavis Pharmaceuticals
  9. "Product Information. Bi-Peglyte (bisacodyl-PEG 3350 with electrolytes)." Pendopharm
  10. Vaizman K, Li J, Iswara K, Tenner S (2007) "Ischemic colitis induced by the combination of Bisacodyl and polyethylene glycol in preparation for colonoscopy." Am J Gastroenterol, 102, S267
  11. Belsey J, Epstein O, heresbach D (2009) "Systematic review: adverse event reports for oral sodium phosphate and polyethylene glycol." Aliment Pharmacol Ther, 29, p. 15-28
  12. Hung SY, Chen HC, Chen WT (2020) "A randomized trial comparing the bowel cleansing efficacy of sodium picosulfate/magnesium citrate and polyethylene glycol/Bisacodyl (The Bowklean Study)" Sci Rep, 10, p. 5604
  13. Adamcewicz M, Bearelly D, Porat G, Friedenberg FK (2011) "Mechanism of action and toxicities of purgatives used for colonoscopy preparation." Expert Opin Drug Metab Toxicol, 7, p. 89-101
  14. Anastassopoulos K, Farraye FA, Knight T, Colman S, Cleveland MvB, Pelham RW (2016) "A comparative study of treatment-emergent adverse events following use of common bowel preparations among a colonoscopy screening population: results from a post-marketing observational study." Dig Dis Sci, 61, p. 2993-3006
  15. Barbeau P, Wolfe D, Yazdi F, et al. (2018) "Comparative safety of bowel cleansers: protocol for a systematic review and network meta-analysis." BMJ Open, 8, e021892
View all 15 references

Switch to consumer interaction data

Minor

diazePAM sodium bicarbonate

Applies to: Valrelease (diazepam) and bisacodyl / polyethylene glycol 3350 / potassium chloride / sodium bicarbonate / sodium chloride

A number of studies have reported that antacids can delay the gastrointestinal absorption and reduce the peak plasma concentration (Cmax) of some benzodiazepines, including clorazepate, chlordiazepoxide and diazepam, although the overall extent of absorption is generally not affected. The exact mechanism of interaction is unknown, but may involve delayed gastric emptying or cation binding of the benzodiazepine. As a result, benzodiazepine onset of action may be delayed and clinical effects diminished. However, one study reported a significant increase in diazepam absorption during coadministration with aluminum hydroxide, and there was a marginal increase in the onset of sedative effect. Aluminum hydroxide also increased triazolam Cmax and systemic exposure (AUC) in 11 dialysis patients such that their drug levels reached into the range observed for the matched controls. In contrast, another study by the same group of investigators found no significant effect of aluminum hydroxide on temazepam absorption or Cmax in 11 patients with end-stage renal disease. A multi-dose study also failed to find an effect of antacids on the steady-state levels of N-desmethyldiazepam, the active metabolite of clorazepate, although an acidic environment is thought to be necessary for the rapid conversion. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may consider separating the administration times of benzodiazepines and antacids or other oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 2 to 3 hours.

References

  1. Chun AH, Carrigan PJ, Hoffman DJ, Kershner RP, Stuart JD (1977) "Effect of antacids on absorption of clorazepate." Clin Pharmacol Ther, 22, p. 329-35
  2. Nair SG, Gamble JA, Dundee JW, Howard PJ (1976) "The influence of three antacids on the absorption and clinical action of oral diazepam." Br J Anaesth, 48, p. 1175-80
  3. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, Koch-Weser J (1977) "Absorption rate, blood concentrations, and early response to oral chlordiazepoxide." Am J Psychiatry, 134, p. 559-62
  4. Greenblatt DJ, Allen MD, MacLaughlin DS, Harmatz JS, Shader RI (1978) "Diazepam absorption: effect of antacids and food." Clin Pharmacol Ther, 24, p. 600-9
  5. Shader RI, Georgotas A, Greenblatt DJ, Harmatz JS, Allen MD (1978) "Impaired absorption of desmethyldiazepam from clorazepate by magnesium aluminum hydroxide." Clin Pharmacol Ther, 24, p. 308-15
  6. Kroboth PD, Smith RB, Rault R, Silver MR, Sorkin MI, Puschett JB, Juhl RP (1985) "Effects of end-stage renal disease and aluminum hydroxide on temazepam kinetics." Clin Pharmacol Ther, 37, p. 453-9
  7. Kroboth PD, Smith RB, Silver MR, Rault R, Sorkin MI, Puschett JB, Juhl RP (1985) "Effects of end stage renal disease and aluminium hydroxide on triazolam pharmacokinetics." Br J Clin Pharmacol, 19, p. 839-42
  8. Shader RI, Ciraulo DA, Greenblatt DJ, Harmatz JS (1982) "Steady-state plasma desmethyldiazepam during long-term clorazepate use: effects of antacids." Clin Pharmacol Ther, 31, p. 180-3
  9. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, Koch-Weser J (1976) "Influence of magnesium and aluminum hydroxide mixture on chlordiazepoxide absorption." Clin Pharmacol Ther, 19, p. 234-9
View all 9 references

Switch to consumer interaction data

Drug and food interactions

Moderate

diazePAM food

Applies to: Valrelease (diazepam)

GENERALLY AVOID: Acute alcohol ingestion may potentiate the CNS depression and other CNS effects of many benzodiazepines. Tolerance may develop with chronic ethanol use. The mechanism may be decreased clearance of the benzodiazepines because of CYP450 hepatic enzyme inhibition. Also, it has been suggested that the cognitive deficits induced by benzodiazepines may be increased in patients who chronically consume large amounts of alcohol.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. However, the interaction seems to affect primarily those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability), presumably due to the fact that grapefruit juice inhibits intestinal rather than hepatic CYP450 3A4. Because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised to avoid alcohol during benzodiazepine therapy. Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. (2002) "Product Information. Valium (diazepam)." Roche Laboratories
  4. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  5. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  6. (2001) "Product Information. Doral (quazepam)." Wallace Laboratories
  7. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  8. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  9. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  10. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  11. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  12. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  13. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  14. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  15. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  16. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  17. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  18. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  19. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  20. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  22. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  23. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  24. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  25. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  26. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  27. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  28. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  29. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  30. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  31. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  32. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  33. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  34. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 34 references

Switch to consumer interaction data

Minor

diazePAM food

Applies to: Valrelease (diazepam)

One study has reported a 22% reduction in diazepam plasma levels when coadministered with caffeine. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that changes to caffeine consumption habits may impact the efficacy of diazepam therapy.

References

  1. Ghoneim MM, Hinrichs JV, Chiang CK, Loke WH (1986) "Pharmacokinetic and pharmacodynamic interactions between caffeine and diazepam." J Clin Psychopharmacol, 6, p. 75-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.