Drug Interactions between bepridil and licorice
This report displays the potential drug interactions for the following 2 drugs:
- bepridil
- licorice
Interactions between your drugs
bepridil licorice
Applies to: bepridil and licorice
GENERALLY AVOID: Licorice use has been associated with hypertension and may antagonize the effects of antihypertensive agents or effects of agents with hypotensive properties. Glycyrrhizic acid, a component of licorice, is hydrolyzed in the intestine to a metabolite (glycyrrhetinic acid) that causes mineralocorticoid and renin-suppressing effects. In one study, licorice was found to increase blood pressure in a dose-dependent manner. Healthy volunteers who consumed licorice 50 to 200 g/day (corresponding to 75 to 540 mg/day of glycyrrhetinic acid) for two to four weeks had a 3.1 to 14.4 mmHg increase in their systolic blood pressure. Even the lowest dosage demonstrated a significant effect. In another study, plasma potassium levels decreased by 0.3 to 1.5 mEq/L in 12 out of 14 healthy volunteers who ingested licorice 100 or 200 g/day (equivalent to 700 to 1400 mg/day of glycyrrhizic acid) for one to four weeks, including four who had to be withdrawn from the study because of hypokalemia. Two more subjects were withdrawn due to edema of the face, hands, and ankles. Other side effects reported include mild, transient generalized edema; headache; sodium retention; and weight gain (1 to 4 kg, mean 1.5 kg). Signs of renin-angiotensin-aldosterone suppression were observed in all subjects, especially plasma renin activity and urinary aldosterone concentrations, which fell to subnormal or undetectable levels in the majority of subjects. There have been various published case reports of refractory hypertension, severe hypokalemia (life-threatening hypokalemic paralysis, myopathy, arrhythmia, or cardiac arrest), and hypertensive encephalopathy in association with licorice intoxication. Hypertension and hypokalemia have also been reported with moderate doses of licorice in the form of licorice-flavored chewing gum or candy, chewing tobacco, or licorice-based foods and beverages consumed on a chronic basis. Prolonged use of licorice has led to a hypermineralocorticoid (pseudohyperaldosteronism) syndrome characterized by hypertension, hypernatremia, hypokalemia, metabolic alkalosis, renin-angiotensin-aldosterone suppression, and edema. In studies and case reports, licorice toxicity has generally been completely reversible within one to several weeks of licorice discontinuation. However, renin-angiotensin-aldosterone axis may be suppressed for up to several months.
MANAGEMENT: Patients receiving antihypertensive therapy or agents with hypotensive properties should avoid or limit the consumption of licorice-containing products. Even relatively moderate doses of licorice may be problematic in susceptible patients when ingested regularly for prolonged periods.
References (20)
- Ishikawa S, Kato M, Tokuda T, Momoi H, Sekijima Y, Higuchi M, Yanagisawa N (1999) "Licorice-induced hypokalemic myopathy and hypokalemic renal tubular damage in anorexia nervosa." Int J Eating Disorder, 26, p. 111-4
- Cumming AM, Boddy K, Brown JJ, et al. (1980) "Severe hypokalaemia with paralysis induced by small doses of liquorice." Postgrad Med J, 56, p. 526-9
- Cumming A (1976) "Severe reduction of serum potassium induced by licorice." Nurs Times, 72, p. 367-70
- Lin SH, Yang SS, Chau T, Halperin ML (2003) "An unusual cause of hypokalemic paralysis: chronic licorice ingestion." Am J Med Sci, 325, p. 153-6
- de Klerk GJ, Nieuwenhuis MG, Beutler JJ (1997) "Lesson of the week: hypokalaemia and hypertension associated with use of liquorice flavoured chewing gum." BMJ, 314, p. 731
- Edwards CR (1991) "Lessons from licorice." N Engl J Med, 325, p. 1242-3
- Stewart PM, Wallace AM, Valentino R, Burt D, Shackleton CH, Edwards CR (1987) "Mineralocorticoid activity of liquorice: 11-beta-hydroxysteroid dehydrogenase deficiency comes of age." Lancet, 2, p. 821-4
- Nielsen I, Pedersen RS (1984) "Life-threatening hypokalaemia caused by liquorice ingestion." Lancet, 1, p. 1305
- Rosseel M, Schoors D (1993) "Chewing gum and hypokalaemia." Lancet, 341, p. 175
- Clyburn EB, DiPette DJ (1995) "Hypertension induced by drugs and other substances." Semin Nephrol, 15, p. 72-86
- Farese RV, Biglieri EG, Shackleton CH, Irony I, Gomez-Fontes R (1991) "Licorice-induced hypermineralocorticoidism." N Engl J Med, 325, p. 1223-7
- Elinav E, Chajek-Shaul T (2003) "Licorice consumption causing severe hypokalemic paralysis." Mayo Clin Proc, 78, p. 767-8
- Richard CL, Jurgens TM (2005) "Effects of natural health products on blood pressure." Ann Pharmacother, 39, p. 712-20
- Sigurjonsdottir HA, Franzson L, Manhem K, Ragnarsson J, Sigurdsson G, Wallerstedt S (2001) "Liquorice-induced rise in blood pressure: a linear dose-response relationship." J Hum Hypertens, 15, p. 549-52
- Dellow EL, Unwin RJ, Honour JW (1999) "Pontefract cakes can be bad for you: refractory hypertension and liquorice excess." Nephrol Dial Transplant, 14, p. 218-20
- Epstein MT, Espiner EA, Donald RA, Hughes H (1977) "Effect of eating liquorice on the renin-angiotensin aldosterone axis in normal subjects." Br Med J, 1, p. 488-90
- Epstein MT, Espiner EA, Donald RA, Hughes H (1977) "Liquorice toxicity and the renin-angiotensin-aldosterone axis in man." Br Med J, 1, p. 209-10
- Cumming AM (1977) "Metabolic effects of licorice." Br Med J, 1, p. 906
- Bannister B, Ginsburg R, Shneerson J (1977) "Cardiac arrest due to liquorice-induced hypokalaemia." Br Med J, 2, p. 738-9
- Holmes AM, Young J, Marrott PK, Prentice E (1970) "Pseudohyperaldosteronism induced by habitual ingestion of liquorice." Postgrad Med J, 46, p. 625-9
Drug and food interactions
bepridil food
Applies to: bepridil
MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.
MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.
References (32)
- Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
- Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
- Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
- Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
- Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
- Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
- Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
- Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
- Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
- Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
- Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
- Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
- Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
- Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
- Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
- Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
- Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
- Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
- Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
- Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
- Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
- Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
- Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
- Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
- Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
- Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
- Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
- Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
- Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
bepridil food
Applies to: bepridil
MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.
MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.
References (10)
- Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
- Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
- Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
- Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
- Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
- Cerner Multum, Inc. "Australian Product Information."
- Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
- Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
- (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
- (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
bepridil food
Applies to: bepridil
MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.
MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.
References (14)
- Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
- Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
- Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
- Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
- O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
- Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
- Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
- Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
- Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
- Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
- Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
- McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
- Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
- Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.