Skip to main content

Drug Interactions between Bellamine and Liquituss HD

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

ergotamine pseudoephedrine

Applies to: Bellamine (belladonna / ergotamine / phenobarbital) and Liquituss HD (hydrocodone / pseudoephedrine)

GENERALLY AVOID: Additive or synergistic increases in blood pressure and/or ischemic response may occur when ergot alkaloids are combined with peripheral or central vasoconstrictors. Ergot alkaloids produce arterial vasoconstriction by stimulating alpha-adrenergic and serotonin receptors and inhibiting endothelial-derived relaxation factor release. There have been isolated case reports of gangrene in patients treated with intravenous ergonovine followed shortly by dopamine or norepinephrine.

MANAGEMENT: Ergot alkaloids should generally not be administered in combination with other vasoconstrictive agents. If concomitant use is required, patients should be monitored for excessive vasoconstriction and have vital signs measured regularly. Patients should also be advised to seek immediate medical attention if they experience potential symptoms of ischemia such as coldness, pallor, cyanosis, numbness, tingling, or pain in the extremities; muscle weakness; severe or worsening headache; visual disturbances; severe abdominal pain; chest pain; and shortness of breath.

References

  1. Buchanan N, Cane RD, Miller M (1977) "Symmetrical gangrene of the extremities associated with the use of dopamine subsequent to ergometrine administration." Intensive Care Med, 3, p. 55-6
  2. Barthel W, Glusa E, Koth W (1987) "Interactions of dihydroergotamine with etilefrine in human leg veins in vitro and in situ." Int J Clin Pharmacol Ther Toxicol, 25, p. 63-9
  3. (2002) "Product Information. D.H.E. 45 (dihydroergotamine)." Sandoz Pharmaceuticals Corporation
  4. (2002) "Product Information. Bellergal-S (ergotamine)." Sandoz Pharmaceuticals Corporation
  5. (2001) "Product Information. ProAmatine (midodrine)." Roberts Pharmaceutical Corporation
  6. Chuang SS (2003) "Finger ischemia secondary to the synergistic agonist effect of norepinephrine and ergonovine and in a burn patient." Burns, 29, p. 92-4
View all 6 references

Switch to consumer interaction data

Major

PHENobarbital HYDROcodone

Applies to: Bellamine (belladonna / ergotamine / phenobarbital) and Liquituss HD (hydrocodone / pseudoephedrine)

GENERALLY AVOID: Barbiturates may potentiate the central nervous system (CNS) depressant effects of opioids. Concomitant use may result in profound sedation, respiratory depression, coma, and death. On the other hand, some barbiturates can also induce the hepatic metabolism of opioids that are metabolized by CYP450 3A4 such as butorphanol, fentanyl, hydrocodone, methadone and oxycodone, resulting in enhanced clearance. Reduced analgesic efficacy or withdrawal symptoms may occur in patients maintained on their opioid regimen following the addition of a barbiturate. Conversely, discontinuation of the barbiturate may increase plasma concentrations of the opioid and potentiate the risk of overdose and fatal respiratory depression.

MANAGEMENT: The use of opioids in conjunction with other CNS depressants such as barbiturates should generally be avoided unless alternative treatment options are inadequate. If coadministration is necessary, the dosage and duration of each drug should be limited to the minimum required to achieve desired clinical effect, and patients should be closely monitored for signs and symptoms of CNS and respiratory depression. Particular caution is advisable when a barbiturate is added to or withdrawn from therapy in patients receiving opioids that are CYP450 3A4 substrates, as there may be an increased risk of withdrawal symptoms (e.g., restlessness, insomnia, sweating, lacrimation, or rhinorrhea) following initiation of the barbiturate and overdose following discontinuation. A dosage adjustment for one or both drugs may be required.

References

  1. Liu S-J, Wang RI (1984) "Case report of barbiturate-induced enhancement of methadone metabolism and withdrawal syndrome." Am J Psychiatry, 141, p. 1287-8
  2. Bell J, Seres V, Bowron P, Lewis J, Batey R (1988) "The use of serum methadone levels in patients receiving methadone maintenance." Clin Pharmacol Ther, 43, p. 623-9
  3. "Product Information. Duragesic Transdermal System (fentanyl)." Janssen Pharmaceutica, Titusville, NJ.
  4. (2001) "Product Information. OxyContin (oxycodone)." Purdue Frederick Company
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  6. (2006) "Product Information. Ionsys (fentanyl)." Ortho McNeil Pharmaceutical
  7. Cerner Multum, Inc. "Australian Product Information."
  8. (2013) "Product Information. Zohydro ER (hydrocodone)." Zogenix, Inc
  9. (2017) "Product Information. Butorphanol Tartrate (butorphanol)." Apotex Corporation
  10. (2018) "Product Information. Apadaz (acetaminophen-benzhydrocodone)." KemPharm, Inc
View all 10 references

Switch to consumer interaction data

Moderate

ergotamine PHENobarbital

Applies to: Bellamine (belladonna / ergotamine / phenobarbital) and Bellamine (belladonna / ergotamine / phenobarbital)

MONITOR: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of ergot alkaloids, which are substrates of the isoenzyme.

MANAGEMENT: The potential for diminished pharmacologic effects of ergot alkaloids should be considered during coadministration with CYP450 3A4 inducers. Alternative treatments may be required if an interaction is suspected.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2010) "Product Information. Methergine (methylergonovine)." Novartis Pharmaceuticals

Switch to consumer interaction data

Moderate

belladonna HYDROcodone

Applies to: Bellamine (belladonna / ergotamine / phenobarbital) and Liquituss HD (hydrocodone / pseudoephedrine)

MONITOR: Coadministration of opioids with anticholinergic agents may result in additive central nervous system (CNS), gastrointestinal, and genitourinary effects. The risk and/or severity of adverse effects such as sedation, dizziness, confusion, cognitive and psychomotor impairment, dry mouth, constipation, and urinary retention may increase. Severe constipation may lead to paralytic ileus in some cases.

MANAGEMENT: Caution and close monitoring of central nervous system, gastrointestinal, and genitourinary adverse effects are recommended when opioids are used with anticholinergic agents. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. (2002) "Product Information. Demerol (meperidine)." Sanofi Winthrop Pharmaceuticals
  2. (2002) "Product Information. Dolophine (methadone)." Lilly, Eli and Company
  3. (2001) "Product Information. Tylenol with Codeine (acetaminophen-codeine)." Janssen Pharmaceuticals
  4. "Product Information. Duragesic Transdermal System (fentanyl)." Janssen Pharmaceutica, Titusville, NJ.
  5. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  6. (2001) "Product Information. OxyContin (oxycodone)." Purdue Frederick Company
  7. (2001) "Product Information. Kadian (morphine)." Astra-Zeneca Pharmaceuticals
  8. (2004) "Product Information. DepoDur (morphine liposomal)." Endo Laboratories LLC
  9. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  10. (2006) "Product Information. Opana (oxymorphone)." Endo Laboratories LLC
  11. (2009) "Product Information. Nucynta (tapentadol)." PriCara Pharmaceuticals
  12. (2010) "Product Information. Exalgo (hydromorphone)." Covidien
  13. (2016) "Product Information. Belbuca (buprenorphine)." Endo Pharmaceuticals Solutions Inc
  14. (2017) "Product Information. Alfentanil Hydrochloride (alfentanil)." Akorn Inc
  15. (2017) "Product Information. SUFentanil Citrate (sufentanil)." Akorn Inc
  16. (2017) "Product Information. Lortab (acetaminophen-hydrocodone)." Akorn Inc
  17. (2017) "Product Information. Levorphanol Tartrate (levorphanol)." Sentynl Therapeutics
  18. (2018) "Product Information. Naloxone HCl-Pentazocine HCl (naloxone-pentazocine)." Actavis U.S. (Amide Pharmaceutical Inc)
  19. (2018) "Product Information. Apadaz (acetaminophen-benzhydrocodone)." KemPharm, Inc
View all 19 references

Switch to consumer interaction data

Drug and food interactions

Major

HYDROcodone food

Applies to: Liquituss HD (hydrocodone / pseudoephedrine)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including hydrocodone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Consumption of alcohol while taking some sustained-release formulations of hydrocodone may cause rapid release of the drug, resulting in high systemic levels of hydrocodone that may be potentially lethal. Alcohol apparently can disrupt the release mechanism of some sustained-release formulations. In study subjects, the rate of absorption of hydrocodone from an extended-release formulation was found to be affected by coadministration with 40% alcohol in the fasted state, as demonstrated by an average 2.4-fold (up to 3.9-fold in one subject) increase in hydrocodone peak plasma concentration and a decrease in the time to peak concentration. Alcohol also increased the extent of absorption by an average of 1.2-fold (up to 1.7-fold in one subject).

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of hydrocodone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of hydrocodone by certain compounds present in grapefruit. Increased hydrocodone concentrations could conceivably increase or prolong adverse drug effects and may cause potentially fatal respiratory depression.

MANAGEMENT: Patients taking sustained-release formulations of hydrocodone should not consume alcohol or use medications that contain alcohol. In general, potent narcotics such as hydrocodone should not be combined with alcohol. Patients should also avoid consumption of grapefruit or grapefruit juice during treatment with hydrocodone.

References

  1. (2013) "Product Information. Zohydro ER (hydrocodone)." Zogenix, Inc

Switch to consumer interaction data

Major

PHENobarbital food

Applies to: Bellamine (belladonna / ergotamine / phenobarbital)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
  3. Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
  4. Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
  5. Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
View all 5 references

Switch to consumer interaction data

Moderate

ergotamine food

Applies to: Bellamine (belladonna / ergotamine / phenobarbital)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

belladonna food

Applies to: Bellamine (belladonna / ergotamine / phenobarbital)

GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.

MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.

References

  1. Linnoila M (1973) "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol, 6, p. 107-12

Switch to consumer interaction data

Moderate

pseudoephedrine food

Applies to: Liquituss HD (hydrocodone / pseudoephedrine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Moderate

ergotamine food

Applies to: Bellamine (belladonna / ergotamine / phenobarbital)

MONITOR: Nicotine may cause vasoconstriction in some patients and potentiate the ischemic response to ergot alkaloids.

MANAGEMENT: Caution may be advisable when ergot alkaloids are used in combination with nicotine products. Patients should be advised to seek immediate medical attention if they experience potential symptoms of ischemia such as coldness, pallor, cyanosis, numbness, tingling, or pain in the extremities; muscle weakness; severe or worsening headache; visual disturbances; severe abdominal pain; chest pain; and shortness of breath.

References

  1. (2001) "Product Information. Migranal (dihydroergotamine nasal)." Novartis Pharmaceuticals
  2. (2004) "Product Information. Cafergot (caffeine-ergotamine)." Novartis Pharmaceuticals
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Cerner Multum, Inc. "Australian Product Information."
View all 4 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.