Skip to main content

Drug Interactions between Ayvakit and fexinidazole

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

avapritinib fexinidazole

Applies to: Ayvakit (avapritinib) and fexinidazole

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of avapritinib, which has been shown in vitro to be primarily metabolized by CYP450 3A4 and, to a lesser extent, by CYP450 2C9. Based on pharmacokinetic modeling, administration of avapritinib (300 mg once daily) in combination with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily) is predicted to increase avapritinib systemic exposure (AUC) by 600% at steady state, while administration with the moderate CYP450 3A4 inhibitor fluconazole (200 mg once daily) is predicted to increase avapritinib systemic exposure (AUC) by 210% at steady state. No data are available for other, less potent CYP450 3A4 inhibitors.

MANAGEMENT: Caution is advised when avapritinib is used concomitantly with CYP450 3A4 inhibitors. Patients should be closely monitored for development of serious adverse effects such as intracranial hemorrhage, cognitive impairment, mood disorders, hallucinations, edema, and decreases in hemoglobin, leukocytes, neutrophils and platelets, and the dosing of avapritinib adjusted or withheld as necessary in accordance with the product labeling.

References (2)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2020) "Product Information. Ayvakit (avapritinib)." Blueprint Medicines Corporation

Drug and food interactions

Major

avapritinib food

Applies to: Ayvakit (avapritinib)

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of avapritinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. Based on pharmacokinetic modeling, administration of avapritinib (300 mg once daily) in combination with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily) is predicted to increase avapritinib systemic exposure (AUC) by 600% at steady state, while administration with the moderate CYP450 3A4 inhibitor fluconazole (200 mg once daily) is predicted to increase avapritinib systemic exposure (AUC) by 210% at steady state. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to avapritinib may increase the risk and/or severity of serious adverse effects such as intracranial hemorrhage, cognitive impairment, mood disorders, hallucinations, edema, and decreases in hemoglobin, leukocytes, neutrophils, and platelets.

ADJUST DOSING INTERVAL: Food may increase the oral absorption of avapritinib. When avapritinib was administered with a high-calorie, high-fat meal (approximately 909 calories; 58 g carbohydrate, 56 g fat, 43 g protein), avapritinib Cmax and AUC increased by 59% and 29%, respectively, compared to administration in the fasted state.

MANAGEMENT: Avapritinib should be administered on an empty stomach at least 1 hour before or 2 hours after a meal. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with avapritinib.

References (1)
  1. (2020) "Product Information. Ayvakit (avapritinib)." Blueprint Medicines Corporation
Moderate

fexinidazole food

Applies to: fexinidazole

GENERALLY AVOID: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.

GENERALLY AVOID: The potential exists for pharmacodynamic interactions and/or toxicities between fexinidazole and herbal medicines and supplements. In addition, grapefruit and grapefruit juice may, theoretically, increase the plasma concentrations of fexinidazole and the risk of adverse effects. The mechanism is decreased clearance of fexinidazole due to inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

ADJUST DOSING INTERVAL: Food significantly increases the oral absorption and bioavailability of fexinidazole. Compared with the fasted state, the systemic exposure (AUC) of fexinidazole and its metabolites (fexinidazole sulfoxide [M1], fexinidazole sulfone [M2]) were 4- to 5-fold higher following administration with food.

MANAGEMENT: To ensure maximal oral absorption, fexinidazole should be administered with food each day at about the same time of day (e.g., during or immediately after the main meal of the day). Coadministration of fexinidazole with grapefruit, grapefruit juice, or herbal medicines or supplements should be avoided. Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction and instructed to avoid alcoholic beverages and products containing alcohol or propylene glycol while using oral, intravenous, or vaginal preparations of a nitroimidazole. Alcoholic beverages should not be consumed for at least 48 hours after completion of fexinidazole therapy.

References (10)
  1. Giannini AJ, DeFrance DT (1983) "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol, 20, p. 509-15
  2. Alexander I (1985) "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract, 39, p. 292-3
  3. Harries DP, Teale KF, Sunderland G (1990) "Metronidazole and alcohol: potential problems." Scott Med J, 35, p. 179-80
  4. Edwards DL, Fink PC, Van Dyke PO (1986) "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm, 5, p. 999-1000
  5. (2002) "Product Information. Flagyl (metronidazole)." Searle
  6. Williams CS, Woodcock KR (2000) "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother, 34, p. 255-7
  7. Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP (2002) "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother, 36, p. 971-4
  8. Krulewitch CJ (2003) "An unexpected adverse drug effect." J Midwifery Womens Health, 48, p. 67-8
  9. (2004) "Product Information. Tindamax (tinidazole)." Presutti Laboratories Inc
  10. (2021) "Product Information. Fexinidazole (fexinidazole)." sanofi-aventis

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.