Drug Interactions between atorvastatin and Pylera
This report displays the potential drug interactions for the following 2 drugs:
- atorvastatin
- Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)
Interactions between your drugs
tetracycline bismuth subcitrate potassium
Applies to: Pylera (bismuth subcitrate potassium / metronidazole / tetracycline) and Pylera (bismuth subcitrate potassium / metronidazole / tetracycline)
ADJUST DOSING INTERVAL: Concomitant administration of bismuth-containing medications may impair the absorption of oral tetracyclines. The interaction has been studied with tetracycline and doxycycline. The proposed mechanism is chelation of tetracyclines by bismuth.
MANAGEMENT: Administration of a tetracycline and bismuth-containing preparation should either be avoided or separated by two to three hours. However, this precautionary measure is not considered necessary in treatment regimens where bismuth may be given in combination with tetracycline and other medications for the eradication of Helicobacter pylori infection, as the relative contribution of systemic versus local antimicrobial activity against Helicobacter pylori has not been established.
References (5)
- Ericsson CD, Feldman S, Pickering LK, Cleary TG (1982) "Influence of subsalicylate bismuth on absorption of doxycycline." JAMA, 247, p. 2266-7
- Albert KS, Welch RD, DeSante KA, DiSanto AR (1979) "Decreased tetracycline bioavailability caused by a bismuth subsalicylate antidiarrheal mixture." J Pharm Sci, 68, p. 586-8
- (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
- (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
- (2025) "Product Information. Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)." H2-Pharma LLC
metroNIDAZOLE atorvastatin
Applies to: Pylera (bismuth subcitrate potassium / metronidazole / tetracycline) and atorvastatin
MONITOR: The risk of peripheral neuropathy may be increased during concurrent use of two or more agents that are associated with this adverse effect. Patient risk factors include diabetes and age older than 60 years. In some cases, the neuropathy may progress or become irreversible despite discontinuation of the medications.
MANAGEMENT: Caution is advised during concomitant use of agents with neurotoxic effects. Patients should be monitored closely for symptoms of neuropathy such as burning, tingling, pain, or numbness in the hands and feet. Since the development of peripheral neuropathy may be dose-related for many drugs, the recommended dosages should generally not be exceeded. Consideration should be given to dosage reduction or immediate discontinuation of these medications in patients who develop peripheral neuropathy to limit further damage. If feasible, therapy should generally be reinstituted only after resolution of neuropathy symptoms or return of symptoms to baseline status. In some cases, permanent dosage reductions may be required.
References (4)
- Carrion C, Espinosa E, Herrero A, Garcia B (1995) "Possible vincristine-isoniazid interaction." Ann Pharmacother, 29, p. 201
- Argov Z, Mastaglia FL (1979) "Drug-induced peripheral neuropathies." Br Med J, 1, p. 663-6
- Pharmaceutical Society of Australia (2006) APPGuide online. Australian prescription products guide online. http://www.appco.com.au/appguide/default.asp
- EMEA. European Medicines Agency (2007) EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid
Drug and food/lifestyle interactions
metroNIDAZOLE food/lifestyle
Applies to: Pylera (bismuth subcitrate potassium / metronidazole / tetracycline)
CONTRAINDICATED: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.
MANAGEMENT: Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction. Consumption of alcoholic beverages and products containing propylene glycol is specifically contraindicated during and for at least 3 days after completion of metronidazole and benznidazole therapy according to their product labeling.
References (9)
- Giannini AJ, DeFrance DT (1983) "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol, 20, p. 509-15
- Alexander I (1985) "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract, 39, p. 292-3
- Harries DP, Teale KF, Sunderland G (1990) "Metronidazole and alcohol: potential problems." Scott Med J, 35, p. 179-80
- (2001) "Product Information. Flagyl (metronidazole)." Searle
- Edwards DL, Fink PC, Van Dyke PO (1986) "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm, 5, p. 999-1000
- Williams CS, Woodcock KR (2000) "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother, 34, p. 255-7
- Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP (2002) "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother, 36, p. 971-4
- Krulewitch CJ (2003) "An unexpected adverse drug effect." J Midwifery Womens Health, 48, p. 67-8
- (2017) "Product Information. Benznidazole (benznidazole)." Everett Laboratories Inc
tetracycline food/lifestyle
Applies to: Pylera (bismuth subcitrate potassium / metronidazole / tetracycline)
ADJUST DOSING INTERVAL: Administration with food, particularly dairy products, significantly reduces tetracycline absorption. The calcium content in some foods can form nonabsorbable chelates with tetracycline.
MANAGEMENT: Tetracycline should be administered one hour before or two hours after meals. Because oral tetracycline has caused rare cases of esophagitis and esophageal ulceration, patients should be advised to take tetracycline with a large glass of water while standing or sitting upright and to avoid laying down immediately afterwards.
References (5)
- (2001) "Product Information. Achromycin (tetracycline)." Lederle Laboratories
- (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
- (2024) "Product Information. Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)." Flynn Pharma Ltd
- (2025) "Product Information. Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)." H2-Pharma LLC
- Laboratoires Juvise Pharmaceuticals (2025) Bismuth subcitrate potassium, metronidazole, tetracycline hydrochloride capsules (Pylera) - product monograph. https://pdf.hres.ca/dpd_pm/00076786.PDF
atorvastatin food/lifestyle
Applies to: atorvastatin
GENERALLY AVOID: Coadministration with grapefruit juice may increase the plasma concentrations of atorvastatin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. When a single 40 mg dose of atorvastatin was coadministered with 240 mL of grapefruit juice, atorvastatin peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 16% and 37%, respectively. Greater increases in Cmax (up to 71%) and/or AUC (up to 2.5 fold) have been reported with excessive consumption of grapefruit juice (>=750 mL to 1.2 liters per day). Clinically, high levels of HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death.
ADJUST DOSING INTERVAL: Fibres such as oat bran and pectin may diminish the pharmacologic effects of HMG-CoA reductase inhibitors by interfering with their absorption from the gastrointestinal tract.
MANAGEMENT: Patients receiving therapy with atorvastatin should limit their consumption of grapefruit juice to no more than 1 liter per day. Patients should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. In addition, patients should either refrain from the use of oat bran and pectin or, if concurrent use cannot be avoided, to separate the administration times by at least 2 to 4 hours.
References (7)
- Richter WO, Jacob BG, Schwandt P (1991) "Interaction between fibre and lovastatin." Lancet, 338, p. 706
- McMillan K (1996) "Considerations in the formulary selection of hydroxymethylglutaryl coenzyme a reductase inhibitors." Am J Health Syst Pharm, 53, p. 2206-14
- (2001) "Product Information. Lipitor (atorvastatin)." Parke-Davis
- Boberg M, Angerbauer R, Fey P, Kanhai WK, Karl W, Kern A, Ploschke J, Radtke M (1997) "Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P45 isozymes involved." Drug Metab Dispos, 25, p. 321-31
- Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
- Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
- Neuvonen PJ, Backman JT, Niemi M (2008) "Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin." Clin Pharmacokinet, 47, p. 463-74
bismuth subcitrate potassium food/lifestyle
Applies to: Pylera (bismuth subcitrate potassium / metronidazole / tetracycline)
ADJUST DOSING INTERVAL: Food may impair the gastrointestinal absorption and decrease the bioavailability of bismuth from the administration of bismuth subcitrate potassium (also known as colloidal bismuth subcitrate or tripotassium dicitratobismuthate). The clinical significance of this effect is unknown, as the relative importance of systemic versus local bismuth concentrations for antimicrobial activity against Helicobacter pylori has not been established. Investigators have suggested that the increased gastric retention time of bismuth in the presence of food may be beneficial by prolonging the local exposure of Helicobacter pylori to high concentrations of bismuth, although the amount of bismuth absorbed systemically and secreted back into the gastric fluid may also contribute to its therapeutic effect. When Pylera (a treatment preparation for Helicobacter pylori infection that contains bismuth subcitrate potassium 420 mg, metronidazole 375 mg, and tetracycline 375 mg per recommended dose) was administered after a standardized high-fat breakfast in 23 healthy volunteers, mean systemic exposure (AUC) for bismuth decreased by 60% compared to administration in the fasting state. Metronidazole and tetracycline AUC values were also reduced by 6% and 34%, respectively. However, these changes are not deemed clinically relevant, as eradication rates of Helicobacter pylori near 90% have been reported in trial patients administered Pylera routinely after meals.
MANAGEMENT: Pylera and generic equivalents should be administered after meals (breakfast, lunch, and dinner) and at bedtime (preferably with a snack). The manufacturers for some of the other bismuth subcitrate potassium products have recommended avoiding the ingestion of food, beverages, or other medications within one-half hour before and after each dose. The prescribing information or package labeling should be consulted for dosing and administration instructions that are appropriate for each product.
References (4)
- Cerner Multum, Inc (2015) "ANVISA Bulário Eletrônico."
- (2024) "Product Information. Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)." Flynn Pharma Ltd
- (2025) "Product Information. Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)." H2-Pharma LLC
- Spenard J, Aumais C, Massicotte J, et al. (2005) "Effects of food and formulation on the relative bioavailability of bismuth biskalcitrate, metronidazole, and tetracycline given for Helicobacter pylori eradication." Br J Clin Pharmacol, 60, p. 374-7
tetracycline food/lifestyle
Applies to: Pylera (bismuth subcitrate potassium / metronidazole / tetracycline)
GENERALLY AVOID: The oral bioavailability of quinolone and tetracycline antibiotics may be reduced by concurrent administration of preparations containing polyvalent cations such as aluminum, calcium, iron, magnesium, and zinc. Therapeutic failure may result. The proposed mechanism is chelation of quinolone and tetracycline antibiotics by di- and trivalent cations, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. Reduced gastrointestinal absorption of the cations should also be considered.
MANAGEMENT: Concomitant administration of oral quinolone and tetracycline antibiotics with preparations containing aluminum, calcium, iron, magnesium, and/or zinc salts should generally be avoided. Otherwise, the times of administration should be staggered by as much as possible to minimize the potential for interaction. Quinolones should typically be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation preparations, depending on the quinolone and formulation. Likewise, tetracyclines and polyvalent cation preparations should typically be administered 2 to 4 hours apart. The prescribing information for the antibiotic should be consulted for more specific dosing recommendations.
References (51)
- Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
- Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
- Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
- Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
- Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
- Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
- Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
- Nguyen VX, Nix DE, Gillikin S, Schentag JJ (1989) "Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline." Antimicrob Agents Chemother, 33, p. 434-6
- Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
- Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
- Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
- Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
- Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
- Garty M, Hurwitz A (1980) "Effect of cimetidine and antacids on gastrointestinal absorption of tetracycline." Clin Pharmacol Ther, 28, p. 203-7
- Gotz VP, Ryerson GG (1986) "Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease." Drug Intell Clin Pharm, 20, p. 694-6
- McCormack JP, Reid SE, Lawson LM (1990) "Theophylline toxicity induced by tetracycline." Clin Pharm, 9, p. 546-9
- D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
- Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
- Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
- Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
- Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
- (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
- Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
- (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
- Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
- Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
- Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
- Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
- Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
- Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
- Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
- Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
- Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
- Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
- Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
- (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
- (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
- (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
- (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
- Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
- Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
- Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
- Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
- Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
- Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
- Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
- (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
- (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
- (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
- (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
- (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.