Skip to main content

Drug Interactions between Atapryl and ketamine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

ketamine selegiline

Applies to: ketamine and Atapryl (selegiline)

CONTRAINDICATED: Anecdotal reports have implicated the concomitant use of general anesthesia and nonselective monoamine oxidase inhibitors (MAOIs) as causing hypotension or hypertension. Analysis of these cases suggests that other contributing factors may have been involved (e.g., meperidine and sympathomimetic agents). The safe administration of general anesthetics to patients taking MAOIs has also been reported.

MANAGEMENT: The makers of MAOIs, both selective and nonselective, consider general anesthesia to be contraindicated in patients treated with MAOIs and recommend discontinuing MAOI therapy 10 to 14 days before elective surgery. However, this precaution is generally no longer considered necessary as long as patients are closely monitored during surgery and any adverse or idiosyncratic reactions are promptly managed.

References (5)
  1. (2001) "Product Information. Nardil (phenelzine)." Parke-Davis
  2. (2001) "Product Information. Parnate (tranylcypromine)." SmithKline Beecham
  3. (2001) "Product Information. Marplan (isocarboxazid)." Roche Laboratories
  4. (2006) "Product Information. Emsam (selegiline)." Bristol-Myers Squibb
  5. (2006) "Product Information. Azilect (rasagiline)." Teva Pharmaceuticals USA

Drug and food interactions

Major

selegiline food

Applies to: Atapryl (selegiline)

GENERALLY AVOID: Foods that contain large amounts of tyramine may precipitate a hypertensive crisis in patients treated with monoamine oxidase inhibitors (MAOIs). The mechanism is inhibition of MAO-A, the enzyme responsible for metabolizing exogenous amines such as tyramine in the gut and preventing them from being absorbed intact. Once absorbed, tyramine is metabolized to octopamine, a substance that is believed to displace norepinephrine from storage granules. Although selegiline is considered a selective inhibitor of MAO-B, the selectivity may not be absolute even at recommended dosages. Rare cases of hypertensive reactions associated with ingestion of tyramine-containing foods have been reported in patients taking the recommended daily oral dose of selegiline. Data for transdermal selegiline indicate that the 6 mg/24 hour dosage may be given safely without dietary restrictions. However, limited data are available for higher dosages.

MANAGEMENT: Patients treated with oral selegiline and transdermal selegiline (greater than 6 mg/24 hour) should preferably avoid consumption of products that contain large amounts of amines and protein foods in which aging or breakdown of protein is used to increase flavor. These foods include cheese (particularly strong, aged or processed cheeses), sour cream, wine (particularly red wine), champagne, beer, pickled herring, anchovies, caviar, shrimp paste, liver (particularly chicken liver), dry sausage, salamis, figs, raisins, bananas, avocados, chocolate, soy sauce, bean curd, sauerkraut, yogurt, papaya products, meat tenderizers, fava bean pods, protein extracts, yeast extracts, and dietary supplements. Caffeine may also precipitate hypertensive crisis so its intake should be minimized as well. At least 14 days should elapse following discontinuation of selegiline therapy before these foods may be consumed. Specially designed reference materials and dietary consultation are recommended so that an appropriate and safe diet can be planned. Patients should also be advised to promptly seek medical attention if they experience potential signs and symptoms of a hypertensive crisis such as severe headache, visual disturbances, difficulty thinking, stupor or coma, seizures, chest pain, unexplained nausea or vomiting, and stroke-like symptoms. The recommended dosages of selegiline should not be exceeded, as it can increase the risk of nonselective MAO inhibition and a hypertensive crisis.

References (12)
  1. Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
  2. Nuessle WF, Norman FC, Miller HE (1965) "Pickled herring and tranylcypromine reaction." JAMA, 192, p. 142-3
  3. Sweet RA, Liebowitz MR, Holt CS, Heimberg RG (1991) "Potential interactions between monoamine oxidase inhibitors and prescribed dietary supplements." J Clin Psychopharmacol, 11, p. 331-2
  4. McGrath PJ, Stewart JW, Quitkin FM (1989) "A possible L-deprenyl induced hypertensive reaction." J Clin Psychopharmacol, 9, p. 310-1
  5. (2001) "Product Information. Eldepryl (selegiline)." Somerset Pharmaceuticals Inc
  6. Lefebvre H, Noblet C, Morre N, Wolf LM (1995) "Pseudo-phaeochromocytoma after multiple drug interactions involving the selective monoamine oxidase inhibitor selegiline." Clin Endocrinol (Oxf), 42, p. 95-8
  7. Zetin M, Plon L, DeAntonio M (1987) "MAOI reaction with powdered protein dietary supplement." J Clin Psychiatry, 48, p. 499
  8. Domino EF, Selden EM (1984) "Red wine and reactions." J Clin Psychopharmacol, 4, p. 173-4
  9. Tailor SA, Shulman KI, Walker SE, Moss J, Gardner D (1994) "Hypertensive episode associated with phenelzine and tap beer--a reanalysis of the role of pressor amines in beer." J Clin Psychopharmacol, 14, p. 5-14
  10. Pohl R, Balon R, Berchou R (1988) "Reaction to chicken nuggets in a patient taking an MAOI." Am J Psychiatry, 145, p. 651
  11. Ito D, Amano T, Sato H, Fukuuchi Y (2001) "Paroxysmal hypertensive crises induced by selegiline in a patient with Parkinson's disease." J Neurol, 248, p. 533-4
  12. (2006) "Product Information. Emsam (selegiline)." Bristol-Myers Squibb
Major

ketamine food

Applies to: ketamine

MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.

MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
Moderate

ketamine food

Applies to: ketamine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of ketamine. Use in combination may result in additive central nervous system (CNS) depression and/or impairment of judgment, thinking, and psychomotor skills.

GENERALLY AVOID: Coadministration of oral ketamine with grapefruit juice may significantly increase the plasma concentrations of S(+) ketamine, the dextrorotatory enantiomer of ketamine. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. When a single 0.2 mg/kg dose of S(+) ketamine was administered orally on study day 5 with grapefruit juice (200 mL three times daily for 5 days) in 12 healthy volunteers, mean S(+) ketamine peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 2.1- and 3.0-fold, respectively, compared to administration with water. In addition, the elimination half-life of S(+) ketamine increased by 24% with grapefruit juice, and the ratio of the main metabolite norketamine to ketamine was decreased by 57%. The pharmacodynamics of ketamine were also altered by grapefruit juice. Specifically, self-rated relaxation was decreased and performance in the digit symbol substitution test was increased with grapefruit juice, but other behavioral or analgesic effects were not affected.

MANAGEMENT: Patients receiving ketamine should not drink alcohol. Caution is advised when ketamine is used in patients with acute alcohol intoxication or a history of chronic alcoholism. Following anesthesia with ketamine, patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination, such as driving or operating hazardous machinery, for at least 24 hours and until they know how the medication affects them. Patients treated with oral ketamine should also avoid consumption of grapefruit and grapefruit juice during treatment. Otherwise, dosage reductions of oral ketamine should be considered.

References (4)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
  4. Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2012) "S-ketamine concentrations are greatly increased by grapefruit juice." Eur J Clin Pharmacol, 68, p. 979-86
Moderate

selegiline food

Applies to: Atapryl (selegiline)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of central nervous system (CNS)-active agents. Use in combination may result in additive CNS depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled against driving, operating machinery, or engaging in potentially hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (5)
  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  5. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.