Skip to main content

Drug Interactions between aspirin / butalbital / caffeine / codeine and emtricitabine / lopinavir / ritonavir / tenofovir

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

codeine butalbital

Applies to: aspirin / butalbital / caffeine / codeine and aspirin / butalbital / caffeine / codeine

GENERALLY AVOID: Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants (e.g., nonbenzodiazepine sedatives/hypnotics, anxiolytics, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol) may result in profound sedation, respiratory depression, coma, and death. The risk of hypotension may also be increased with some CNS depressants (e.g., alcohol, benzodiazepines, phenothiazines).

MANAGEMENT: The use of opioids in conjunction with benzodiazepines or other CNS depressants should generally be avoided unless alternative treatment options are inadequate. If coadministration is necessary, the dosage and duration of each drug should be limited to the minimum required to achieve desired clinical effect, with cautious titration and dosage adjustments when needed. Patients should be monitored closely for signs and symptoms of respiratory depression and sedation, and advised to avoid driving or operating hazardous machinery until they know how these medications affect them. Cough medications containing opioids (e.g., codeine, hydrocodone) should not be prescribed to patients using benzodiazepines or other CNS depressants including alcohol. For patients who have been receiving extended therapy with both an opioid and a benzodiazepine and require discontinuation of either medication, a gradual tapering of dose is advised, since abrupt withdrawal may lead to withdrawal symptoms. Severe cases of benzodiazepine withdrawal, primarily in patients who have received excessive doses over a prolonged period, may result in numbness and tingling of extremities, hypersensitivity to light and noise, hallucinations, and epileptic seizures.

References

  1. US Food and Drug Administration (2016) FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning. http://www.fda.gov/downloads/Drugs/DrugSafety/UCM518672.pdf

Switch to consumer interaction data

Moderate

codeine ritonavir

Applies to: aspirin / butalbital / caffeine / codeine and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Drugs that are inhibitors of CYP450 2D6 may interfere with the analgesic effect of codeine. The mechanism is decreased in vivo conversion of codeine to morphine, a metabolic reaction mediated by CYP450 2D6. If an inhibitor is started after a stable dose of codeine is achieved, reduced analgesia and possible opioid withdrawal may result. Conversely, ceasing CYP450 2D6 inhibitor therapy may lead to increased morphine levels, increasing the risk of opioid-related adverse effects.

MANAGEMENT: The possibility of reduced or inadequate pain relief should be considered in patients receiving codeine with drugs that inhibit CYP450 2D6. An increase in the codeine dosage or a different analgesic agent may be necessary in patients requiring therapy with CYP450 2D6 inhibitors. If concurrent therapy is used and the CYP450 2D6 inhibitor is stopped, the dose of codeine may need to be reduced and the patient should be monitored for signs and symptoms of respiratory depression or sedation. In addition, it should be noted that rolapitant, a moderate CYP450 2D6 inhibitor, may interfere with the analgesic effects of codeine for at least 28 days after administration of rolapitant. The manufacturer's prescribing information should be consulted for further information.

References

  1. Desmeules J, Dayer P, Gascon MP, Magistris M (1989) "Impact of genetic and environmental factors on codeine analgesia." Clin Pharmacol Ther, 45, p. 122
  2. Sindrup SH, Arendt-Nielsen L, Brosen K, et al. (1992) "The effect of quinidine on the analgesic effect of codeine." Eur J Clin Pharmacol, 42, p. 587-92
  3. Sindrup SH, Hofmann U, Asmussen J, Mikus G, Brosen K, Nielsen F, Ingwersen SH, Broen Christensen C (1996) "Impact of quinidine on plasma and cerebrospinal fluid concentrations of codeine and morphine after codeine intake." Eur J Clin Pharmacol, 49, p. 503-9
  4. Sindrup SH, Brosen K, Bjerring P, et al. (1991) "Codeine increases pain threshold to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine." Clin Pharmacol Ther, 49, p. 686-93
  5. Poulsen L, Brosen K, Srendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH (1996) "Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects." Eur J Clin Pharmacol, 51, p. 289-95
  6. Desmeules J, Gascon MP, Dayer P, Magistris M (1991) "Impact of environmental and genetic factors on codeine analgesia." Eur J Clin Pharmacol, 41, p. 23-6
  7. Caraco Y, Sheller J, Wood JJ (1996) "Pharmacogenetic determination of the effects of codeine and prediction of drug interactions." J Pharmacol Exp Ther, 278, p. 1165-74
  8. Caraco Y, Sheller J, Wood AJJ (1999) "Impact of ethnic origin and quinidine coadministration on codeine's disposition and pharmacodynamic effects." J Pharmacol Exp Ther, 290, p. 413-22
  9. Hersh EV, Moore PA (2004) "Drug interactions in dentistry: the importance of knowing your CYPs." J Am Dent Assoc, 135, p. 298-311
  10. Vevelstad M, Pettersen S, Tallaksen C, Brors O (2009) "O-demethylation of codeine to morphine inhibited by low-dose levomepromazine." Eur J Clin Pharmacol, 65, p. 795-801
  11. Thorn CF, Klein TE, Altman RB (2009) "Codeine and morphine pathway." Pharmacogenet Genomics, 19, p. 556-8
  12. Zhou SF (2009) "Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II." Clin Pharmacokinet, 48, p. 761-804
  13. (2015) "Product Information. Varubi (rolapitant)." Tesaro Inc.
  14. (2023) "Product Information. Codeine Sulfate (codeine)." Hikma USA (formerly West-Ward Pharmaceutical Corporation)
View all 14 references

Switch to consumer interaction data

Moderate

butalbital ritonavir

Applies to: aspirin / butalbital / caffeine / codeine and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with drugs that are inducers of CYP450 3A4 may decrease the plasma concentrations of protease inhibitors (PIs), which are primarily metabolized by the isoenzyme.

MANAGEMENT: Given the risk of reduced viral susceptibility and resistance development associated with subtherapeutic antiretroviral drug levels, protease inhibitors should be used cautiously with agents that induce CYP450 3A4, particularly if only one PI is used in the antiretroviral regimen. Coadministration of atazanavir without ritonavir and carbamazepine, phenobarbital, or phenytoin is not recommended. Antiretroviral response should be monitored more closely whenever a CYP450 3A4 inducer is added to or withdrawn from therapy, and the antiretroviral regimen adjusted as necessary.

References

  1. (2001) "Product Information. Invirase (saquinavir)." Roche Laboratories
  2. (2001) "Product Information. Crixivan (indinavir)." Merck & Co., Inc
  3. (2001) "Product Information. Viracept (nelfinavir)." Agouron Pharma Inc
  4. Brooks J, Daily J, Schwamm L (1997) "Protease inhibitors and anticonvulsants." AIDS Clin Care, 9, 87,90
  5. Barry M, Gibbons S, Back D, Mulcahy F (1997) "Protease inhibitors in patients with HIV disease. Clinically important pharmacokinetic considerations." Clin Pharmacokinet, 32, p. 194-209
  6. (2001) "Product Information. Agenerase (amprenavir)." Glaxo Wellcome
  7. Acosta EP, Henry K, Baken L, Page LM, Fletcher CV (1999) "Indinavir concentrations and antiviral effect." Pharmacotherapy, 19, p. 708-12
  8. Sommadossi JP (1999) "HIV protease inhibitors: pharmacologic and metabolic distinctions." AIDS, 13, s29-40
  9. Hugen PWH, Burger DM, Brinkman K, terHofstede HJM, Schuurman R, Koopmans PP, Hekster YA (2000) "Carbamazepine-indinavir interaction causes antiretroviral therapy failure." Ann Pharmacother, 34, p. 465-70
  10. Durant J, Clevenbergh P, Garraffo R, Halfon P, Icard S, DelGiudice P, Montagne N, Schapiro JM, Dellamonica P (2000) "Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study." Aids, 14, p. 1333-9
  11. (2001) "Product Information. Fortovase (saquinavir)." Roche Laboratories
  12. (2003) "Product Information. Reyataz (atazanavir)." Bristol-Myers Squibb
  13. (2003) "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline
  14. Liedtke MD, Lockhart SM, Rathbun RC (2004) "Anticonvulsant and antiretroviral interactions." Ann Pharmacother, 38, p. 482-9
  15. (2005) "Product Information. Aptivus (tipranavir)." Boehringer-Ingelheim
  16. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
  17. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
View all 17 references

Switch to consumer interaction data

Moderate

butalbital lopinavir

Applies to: aspirin / butalbital / caffeine / codeine and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration of lopinavir-ritonavir with inducers of CYP450 3A4 may decrease the plasma concentrations of lopinavir, which is primarily metabolized by the isoenzyme. Clinical studies have shown that potent CYP450 3A4 inducers such as rifampin and phenytoin can significantly alter the plasma concentrations of lopinavir, possibly by overriding some of the inhibiting effects of ritonavir and enhancing the clearance of both lopinavir and ritonavir. In 22 healthy, HIV-negative subjects, administration of lopinavir-ritonavir (400 mg-100 mg twice daily for 20 days) with rifampin (600 mg once daily for 10 days) decreased lopinavir peak plasma concentration (Cmax), systemic exposure (AUC) and trough plasma concentration (Cmin) by 55%, 75% and 99%, respectively. In another study of 12 healthy volunteers, coadministration of lopinavir-ritonavir (400 mg-100 mg twice daily for 22 days) and phenytoin (300 mg once daily on days 11 thru 22) resulted in decreases in Cmax, AUC and Cmin of lopinavir by 24%, 33% and 46%, respectively. Ritonavir Cmax, AUC and Cmin were also reduced by 20%, 28% and 47%, respectively, although only the change in Cmin was statistically significant. The extent to which other, less potent inducers of CYP450 3A4 may interact with lopinavir-ritonavir is unknown.

MANAGEMENT: Given the risk of reduced viral susceptibility and resistance development associated with subtherapeutic antiretroviral drug levels, caution is advised if lopinavir-ritonavir is prescribed with CYP450 3A4 inducers. Close clinical and laboratory monitoring of antiretroviral response is recommended.

References

  1. Brooks J, Daily J, Schwamm L (1997) "Protease inhibitors and anticonvulsants." AIDS Clin Care, 9, 87,90
  2. Durant J, Clevenbergh P, Garraffo R, Halfon P, Icard S, DelGiudice P, Montagne N, Schapiro JM, Dellamonica P (2000) "Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study." Aids, 14, p. 1333-9
  3. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical
  4. Liedtke MD, Lockhart SM, Rathbun RC (2004) "Anticonvulsant and antiretroviral interactions." Ann Pharmacother, 38, p. 482-9
  5. Lim ML, Min SS, Eron JJ, et al. (2004) "Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction." J Acquir Immune Defic Syndr, 36, p. 1034-40
View all 5 references

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Minor

aspirin caffeine

Applies to: aspirin / butalbital / caffeine / codeine and aspirin / butalbital / caffeine / codeine

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Drug and food interactions

Major

butalbital food

Applies to: aspirin / butalbital / caffeine / codeine

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
  3. Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
  4. Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
  5. Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
View all 5 references

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

codeine food

Applies to: aspirin / butalbital / caffeine / codeine

GENERALLY AVOID: Ethanol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

MANAGEMENT: Concomitant use of opioid analgesics with ethanol should be avoided.

References

  1. Linnoila M, Hakkinen S (1974) "Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving." Clin Pharmacol Ther, 15, p. 368-73
  2. Sturner WQ, Garriott JC (1973) "Deaths involving propoxyphene: a study of 41 cases over a two-year period." JAMA, 223, p. 1125-30
  3. Girre C, Hirschhorn M, Bertaux L, et al. (1991) "Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers." Eur J Clin Pharmacol, 41, p. 147-52
  4. Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
  5. Sellers EM, Hamilton CA, Kaplan HL, Degani NC, Foltz RL (1985) "Pharmacokinetic interaction of propoxyphene with ethanol." Br J Clin Pharmacol, 19, p. 398-401
  6. Carson DJ (1977) "Fatal dextropropoxyphene poisoning in Northern Ireland. Review of 30 cases." Lancet, 1, p. 894-7
  7. Rosser WW (1980) "The interaction of propoxyphene with other drugs." Can Med Assoc J, 122, p. 149-50
  8. Edwards C, Gard PR, Handley SL, Hunter M, Whittington RM (1982) "Distalgesic and ethanol-impaired function." Lancet, 2, p. 384
  9. Kiplinger GF, Sokol G, Rodda BE (1974) "Effect of combined alcohol and propoxyphene on human performance." Arch Int Pharmacodyn Ther, 212, p. 175-80
View all 9 references

Switch to consumer interaction data

Moderate

aspirin food

Applies to: aspirin / butalbital / caffeine / codeine

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Minor

caffeine food

Applies to: aspirin / butalbital / caffeine / codeine

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52

Switch to consumer interaction data

Minor

tenofovir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences

Switch to consumer interaction data

Minor

aspirin food

Applies to: aspirin / butalbital / caffeine / codeine

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.