Skip to main content

Drug Interactions between Aspir-Mox IB and Calquence

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

aspirin acalabrutinib

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Calquence (acalabrutinib)

MONITOR CLOSELY: Coadministration of acalabrutinib and drugs that interfere with platelet function or coagulation may potentiate the risk of bleeding complications. Serious and fatal hemorrhagic events have been reported during acalabrutinib therapy. In the combined safety database of 1040 patients with hematologic malignancies treated with acalabrutinib monotherapy, major hemorrhage (serious or >= Grade 3 bleeding events or any central nervous system bleeding) occurred in 3.6% of patients, with fatalities occurring in 0.1% of patients. Overall, bleeding events of any grade, including bruising and petechiae, occurred in 46% of patients. The mechanism is not well understood, as bleeding events have occurred in patients both with and without thrombocytopenia. In clinical trials, major hemorrhagic events were experienced by 3% of patients taking acalabrutinib without concurrent antithrombotic agents. The addition of antithrombotic agents increased this percentage to 4.3%.

MANAGEMENT: Concomitant use of acalabrutinib with antithrombotic agents or other drugs that increase bleeding risk should be approached with caution. Close clinical and laboratory monitoring for bleeding complications is recommended during therapy. Patients should be advised to promptly report any signs and symptoms of bleeding to their physician. Refer to the product labeling for guidance on acalabrutinib dosage adjustments in patients with concurrent Grade 3 thrombocytopenia and bleeding.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Moderate

aspirin calcium carbonate

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G (1988) "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis, 11, p. 338-42
  3. Furst DE (1988) "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl, 17, p. 58-62
  4. Miners JO (1989) "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet, 17, p. 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK (1975) "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med, 293, p. 323-5
  6. Shastri RA (1985) "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol, 23, p. 480-4
  7. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  8. Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
  9. (2023) "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC.
View all 9 references

Switch to consumer interaction data

Moderate

aspirin aluminum hydroxide

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G (1988) "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis, 11, p. 338-42
  3. Furst DE (1988) "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl, 17, p. 58-62
  4. Miners JO (1989) "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet, 17, p. 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK (1975) "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med, 293, p. 323-5
  6. Shastri RA (1985) "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol, 23, p. 480-4
  7. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  8. Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
  9. (2023) "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC.
View all 9 references

Switch to consumer interaction data

Moderate

aspirin magnesium hydroxide

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G (1988) "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis, 11, p. 338-42
  3. Furst DE (1988) "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl, 17, p. 58-62
  4. Miners JO (1989) "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet, 17, p. 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK (1975) "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med, 293, p. 323-5
  6. Shastri RA (1985) "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol, 23, p. 480-4
  7. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  8. Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
  9. (2023) "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC.
View all 9 references

Switch to consumer interaction data

Moderate

calcium carbonate acalabrutinib

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Calquence (acalabrutinib)

ADJUST DOSING INTERVAL: Coadministration of acalabrutinib in its capsule formulation with drugs that increase gastric pH may significantly decrease the oral bioavailability of acalabrutinib and reduce its concentrations in plasma. The solubility of acalabrutinib is pH-dependent and decreases with increasing pH. According to the product labeling, acalabrutinib is freely soluble in water at pH below 3 and practically insoluble at pH above 6. Coadministration of acalabrutinib capsules with an antacid (1 gram calcium carbonate) decreased acalabrutinib systemic exposure (AUC) by 53% in healthy subjects, and coadministration with a proton pump inhibitor (omeprazole 40 mg for 5 days) decreased acalabrutinib AUC by 43%. Due to the long-lasting effect of proton pump inhibitors, separation of dosing may not eliminate the interaction with acalabrutinib capsules. By contrast, no clinically significant differences in the pharmacokinetics of acalabrutinib were observed when the tablet formulation, which contains acalabrutinib maleate, was coadministered with the proton pump inhibitor, rabeprazole.

MANAGEMENT: No adjustments to therapy are required when using the tablet formulation containing acalabrutinib maleate. However, if gastric acid reducing agents are required during treatment with acalabrutinib capsules, H2-receptor antagonists and/or antacids should be considered. The manufacturer recommends taking acalabrutinib 2 hours before (or 10 hours after) H2-receptor antagonists and separating the dosing with antacids by at least 2 hours.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Moderate

aluminum hydroxide acalabrutinib

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Calquence (acalabrutinib)

ADJUST DOSING INTERVAL: Coadministration of acalabrutinib in its capsule formulation with drugs that increase gastric pH may significantly decrease the oral bioavailability of acalabrutinib and reduce its concentrations in plasma. The solubility of acalabrutinib is pH-dependent and decreases with increasing pH. According to the product labeling, acalabrutinib is freely soluble in water at pH below 3 and practically insoluble at pH above 6. Coadministration of acalabrutinib capsules with an antacid (1 gram calcium carbonate) decreased acalabrutinib systemic exposure (AUC) by 53% in healthy subjects, and coadministration with a proton pump inhibitor (omeprazole 40 mg for 5 days) decreased acalabrutinib AUC by 43%. Due to the long-lasting effect of proton pump inhibitors, separation of dosing may not eliminate the interaction with acalabrutinib capsules. By contrast, no clinically significant differences in the pharmacokinetics of acalabrutinib were observed when the tablet formulation, which contains acalabrutinib maleate, was coadministered with the proton pump inhibitor, rabeprazole.

MANAGEMENT: No adjustments to therapy are required when using the tablet formulation containing acalabrutinib maleate. However, if gastric acid reducing agents are required during treatment with acalabrutinib capsules, H2-receptor antagonists and/or antacids should be considered. The manufacturer recommends taking acalabrutinib 2 hours before (or 10 hours after) H2-receptor antagonists and separating the dosing with antacids by at least 2 hours.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Moderate

magnesium hydroxide acalabrutinib

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Calquence (acalabrutinib)

ADJUST DOSING INTERVAL: Coadministration of acalabrutinib in its capsule formulation with drugs that increase gastric pH may significantly decrease the oral bioavailability of acalabrutinib and reduce its concentrations in plasma. The solubility of acalabrutinib is pH-dependent and decreases with increasing pH. According to the product labeling, acalabrutinib is freely soluble in water at pH below 3 and practically insoluble at pH above 6. Coadministration of acalabrutinib capsules with an antacid (1 gram calcium carbonate) decreased acalabrutinib systemic exposure (AUC) by 53% in healthy subjects, and coadministration with a proton pump inhibitor (omeprazole 40 mg for 5 days) decreased acalabrutinib AUC by 43%. Due to the long-lasting effect of proton pump inhibitors, separation of dosing may not eliminate the interaction with acalabrutinib capsules. By contrast, no clinically significant differences in the pharmacokinetics of acalabrutinib were observed when the tablet formulation, which contains acalabrutinib maleate, was coadministered with the proton pump inhibitor, rabeprazole.

MANAGEMENT: No adjustments to therapy are required when using the tablet formulation containing acalabrutinib maleate. However, if gastric acid reducing agents are required during treatment with acalabrutinib capsules, H2-receptor antagonists and/or antacids should be considered. The manufacturer recommends taking acalabrutinib 2 hours before (or 10 hours after) H2-receptor antagonists and separating the dosing with antacids by at least 2 hours.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Major

aluminum hydroxide food

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

GENERALLY AVOID: The concomitant administration of aluminum-containing products (e.g., antacids and phosphate binders) and citrates may significantly increase serum aluminum concentrations, resulting in toxicity. Citrates or citric acid are contained in numerous soft drinks, citrus fruits, juices, and effervescent and dispersible drug formulations. Citrates enhance the gastrointestinal absorption of aluminum by an unknown mechanism, which may involve the formation of a soluble aluminum-citrate complex. Various studies have reported that citrate increases aluminum absorption by 4.6- to 50-fold in healthy subjects. Patients with renal insufficiency are particularly at risk of developing hyperaluminemia and encephalopathy. Fatalities have been reported. Patients with renal failure or on hemodialysis may also be at risk from soft drinks and effervescent and dispersible drug formulations that contain citrates or citric acid. It is unknown what effect citrus fruits or juices would have on aluminum absorption in healthy patients.

MANAGEMENT: The concomitant use of aluminum- and citrate-containing products and foods should be avoided by renally impaired patients. Hemodialysis patients should especially be cautioned about effervescent and dispersible over-the-counter remedies and soft drinks. Some experts also recommend that healthy patients should separate doses of aluminum-containing antacids and citrates by 2 to 3 hours.

ADJUST DOSING INTERVAL: The administration of aluminum-containing antacids with enteral nutrition may result in precipitation, formation of bezoars, and obstruction of feeding tubes. The proposed mechanism is the formation of an insoluble complex between the aluminum and the protein in the enteral feeding. Several cases of esophageal plugs and nasogastric tube obstructions have been reported in patients receiving high-protein liquids and an aluminum hydroxide-magnesium hydroxide antacid or an aluminum hydroxide antacid.

MANAGEMENT: Some experts recommend that antacids should not be mixed with or given after high protein formulations, that the antacid dose should be separated from the feeding by as much as possible, and that the tube should be thoroughly flushed before administration.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67

Switch to consumer interaction data

Major

acalabrutinib food

Applies to: Calquence (acalabrutinib)

GENERALLY AVOID: Consumption of grapefruit and/or grapefruit juice may increase the plasma concentrations of acalabrutinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice specifically, but has been reported for other CYP450 3A4 inhibitors. When acalabrutinib was administered with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily for 5 days) in 17 healthy subjects, acalabrutinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 3.9- and 5.1-fold, respectively. Physiologically based pharmacokinetic (PBPK) simulations showed that moderate CYP450 3A4 inhibitors (erythromycin, fluconazole, diltiazem) increased acalabrutinib Cmax and AUC by 2- to nearly 3-fold. In healthy subjects, administration of acalabrutinib with the moderate CYP450 3A4 inhibitors fluconazole (400 mg as a single dose) or isavuconazole (200 mg as a repeated dose for 5 days) increased acalabrutinib Cmax and AUC by 1.4- to 2-fold, while the Cmax and AUC of the active metabolite, ACP-5862, was decreased by 0.65- to 0.88-fold. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased acalabrutinib exposure may potentiate the risk of toxicities such as hemorrhage, infection, cytopenias, malignancies, and atrial fibrillation or flutter.

Food may delay the absorption of acalabrutinib, but does not appear to affect the overall extent of absorption. When a single 100 mg tablet or a 75 mg developmental formulation of acalabrutinib was administered with a high-fat, high-calorie meal (approximately 918 calories; 59 grams carbohydrate, 59 grams fat, 39 grams protein) in healthy study subjects, mean acalabrutinib Cmax was decreased by 54% and 73%, respectively, while time to reach Cmax was delayed by 1 to 2 hours compared to administration under fasted conditions. However, mean AUC was not affected.

MANAGEMENT: Acalabrutinib may be administered with or without food. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with acalabrutinib.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
  5. Chen B, Zhou D, Wei H, et al. (2022) "Acalabrutinib CYP3A-mediated drug-drug interactions: clinical evaluations and physiologically based pharmacokinetic modelling to inform dose adjustment strategy" Br J Clin Pharmacol, 88, p. 3716-29
View all 5 references

Switch to consumer interaction data

Moderate

calcium carbonate food

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
View all 6 references

Switch to consumer interaction data

Moderate

aspirin food

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Minor

aspirin food

Applies to: Aspir-Mox IB (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.