Skip to main content

Drug Interactions between artemether / lumefantrine and My-O-Den

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

adenosine artemether

Applies to: My-O-Den (adenosine) and artemether / lumefantrine

MONITOR CLOSELY: Adenosine has induced torsade de pointes arrhythmia in patients with preexisting long QT syndrome. Theoretically, coadministration of adenosine with agents that can prolong the QT interval may increase that risk as well. The mechanism has not been established, but may involve the depressant effect of adenosine on the sinoatrial and atrioventricular nodes. Rare cases of severe bradycardia have been reported during treatment with adenosine, which could favor the occurrence of torsade de pointes, especially in patients with prolonged QT intervals. Interestingly, no case of torsade de pointes has been reported when adenosine is given by continuous infusion.

MANAGEMENT: Adenosine should be used with caution in patients receiving drugs that are known to prolong the QT interval. Adenosine should be discontinued immediately if severe bradycardia occurs.

References

  1. Wesley RC Jr, Turnquest P (1992) "Torsades de pointe after intravenous adenosine in the presence of prolonged QT syndrome." Am Heart J, 123, p. 794-6
  2. Tachakra SS, Robinson S (1992) "Adenosine and cardiac arrhythmias." BMJ, 305, p. 422
  3. Celiker A, Tokel K, Cil E, Ozkutlu S, Ozme S (1994) "Adenosine induced torsades de pointes in a child with congenital long QT syndrome." Pacing Clin Electrophysiol, 17, p. 1814-7
  4. Michalets EL, Williams CR (2000) "Drug interactions with cisapride: clinical implications." Clin Pharmacokinet, 39, p. 49-75
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  6. Harrington GR, Froelich EG (1993) "Adenosine-induced torsades de pointes." Chest, 103, p. 1299-1301
  7. Mallet ML (2004) "Proarrhythmic effects of adenosine: a review of the literature." Emerg Med J, 21, p. 408-10
  8. Drescher MJ, Mendelssohn R (2002) "Transient torsades de pointes after adenosine." Isr J Trauma Intensive Care Emerg Med, 2, p. 15-7
View all 8 references

Switch to consumer interaction data

Major

adenosine lumefantrine

Applies to: My-O-Den (adenosine) and artemether / lumefantrine

MONITOR CLOSELY: Adenosine has induced torsade de pointes arrhythmia in patients with preexisting long QT syndrome. Theoretically, coadministration of adenosine with agents that can prolong the QT interval may increase that risk as well. The mechanism has not been established, but may involve the depressant effect of adenosine on the sinoatrial and atrioventricular nodes. Rare cases of severe bradycardia have been reported during treatment with adenosine, which could favor the occurrence of torsade de pointes, especially in patients with prolonged QT intervals. Interestingly, no case of torsade de pointes has been reported when adenosine is given by continuous infusion.

MANAGEMENT: Adenosine should be used with caution in patients receiving drugs that are known to prolong the QT interval. Adenosine should be discontinued immediately if severe bradycardia occurs.

References

  1. Wesley RC Jr, Turnquest P (1992) "Torsades de pointe after intravenous adenosine in the presence of prolonged QT syndrome." Am Heart J, 123, p. 794-6
  2. Tachakra SS, Robinson S (1992) "Adenosine and cardiac arrhythmias." BMJ, 305, p. 422
  3. Celiker A, Tokel K, Cil E, Ozkutlu S, Ozme S (1994) "Adenosine induced torsades de pointes in a child with congenital long QT syndrome." Pacing Clin Electrophysiol, 17, p. 1814-7
  4. Michalets EL, Williams CR (2000) "Drug interactions with cisapride: clinical implications." Clin Pharmacokinet, 39, p. 49-75
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  6. Harrington GR, Froelich EG (1993) "Adenosine-induced torsades de pointes." Chest, 103, p. 1299-1301
  7. Mallet ML (2004) "Proarrhythmic effects of adenosine: a review of the literature." Emerg Med J, 21, p. 408-10
  8. Drescher MJ, Mendelssohn R (2002) "Transient torsades de pointes after adenosine." Isr J Trauma Intensive Care Emerg Med, 2, p. 15-7
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

adenosine food

Applies to: My-O-Den (adenosine)

ADJUST DOSING INTERVAL: Caffeine and other xanthine derivatives (e.g., theophylline) are nonspecific, competitive antagonists of adenosine receptors and may interfere with the hemodynamic effects of adenosine. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort.

MANAGEMENT: Clinicians should be aware that adenosine may be less effective in the presence of xanthine derivatives including caffeine. Patients should avoid consumption of caffeine-containing products for at least 12 hours, preferably 24 hours, prior to administration of adenosine for myocardial perfusion imaging.

References

  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  3. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  4. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  5. "Multum Information Services, Inc. Expert Review Panel"
  6. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
View all 6 references

Switch to consumer interaction data

Moderate

lumefantrine food

Applies to: artemether / lumefantrine

GENERALLY AVOID: Coadministration with grapefruit juice may increase the plasma concentrations of artemether and lumefantrine. The mechanism is decreased clearance due to inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. High plasma levels of artemether and lumefantrine may increase the risk of QT interval prolongation and ventricular arrhythmias including torsade de pointes. In clinical trials, asymptomatic prolongation of the Fridericia-corrected QT interval (QTcF) by more than 30 msec from baseline was reported in approximately one-third of patients treated with artemether-lumefantrine, and prolongation by more than 60 msec was reported in more than 5% of patients. A few patients (0.4%) in the adult/adolescent population and no patient in the infant/children population experienced a QTcF greater than 500 msec. However, the possibility that these increases were disease-related cannot be ruled out. In a study of healthy adult volunteers, administration of the six-dose regimen of artemether-lumefantrine was associated with mean changes in QTcF from baseline of 7.45, 7.29, 6.12 and 6.84 msec at 68, 72, 96, and 108 hours after the first dose, respectively. There was a concentration-dependent increase in QTcF for lumefantrine. No subject had a greater than 30 msec increase from baseline nor an absolute increase to more than 500 msec.

ADJUST DOSING INTERVAL: Food enhances the oral absorption of artemether and lumefantrine. In healthy volunteers, the relative bioavailability of artemether increased by two- to threefold and that of lumefantrine by sixteenfold when administered after a high-fat meal as opposed to under fasted conditions.

MANAGEMENT: Patients receiving artemether-lumefantrine therapy should avoid the consumption of grapefruits and grapefruit juice. To ensure maximal oral absorption, artemether-lumefantrine should be taken with food. Inadequate food intake can increase the risk for recrudescence of malaria. Patients who are averse to food during treatment should be closely monitored and encouraged to resume normal eating as soon as food can be tolerated.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2009) "Product Information. Coartem (artemether-lumefantrine)." Novartis Pharmaceuticals

Switch to consumer interaction data

Moderate

adenosine food

Applies to: My-O-Den (adenosine)

ADJUST DOSING INTERVAL: Methylxanthines (e.g., caffeine, theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the pharmacologic effects of adenosine and other adenosine receptor agonists such as dipyridamole and regadenoson. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort. Similarly, caffeine has been found to reduce the hemodynamic response to dipyridamole, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole. In a placebo-controlled study that assessed the effects of oral caffeine on regadenoson-induced increase in coronary flow reserve (CFR), healthy subjects who took caffeine 200 mg orally two hours prior to regadenoson administration exhibited a median CFR that was 92% that of subjects who took placebo. The study was done using positron emission tomography with radiolabeled water.

MANAGEMENT: Clinicians should be aware that adenosine and other adenosine receptor agonists may be less effective in the presence of methylxanthines. Methylxanthines including caffeine should be withheld for 12 to 24 hours (or five half-lives) prior to administration of adenosine receptor agonists for myocardial perfusion imaging. However, parenteral aminophylline should be readily available for treating severe or persistent adverse reactions to adenosine receptor agonists such as bronchospasm or chest pain.

References

  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
  3. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  4. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  5. (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
  6. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  7. Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9
  8. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
  9. (2008) "Product Information. Lexiscan (regadenoson)." Astellas Pharma US, Inc
View all 9 references

Switch to consumer interaction data

Minor

adenosine food

Applies to: My-O-Den (adenosine)

Nicotine may enhance adenosine-associated tachycardia and chest pain. The mechanism is not known. No special precautions appear to be necessary.

References

  1. Smits P, Eijsbouts A, Thien T (1989) "Nicotine enhances the circulatory effects of adenosine in human beings." Clin Pharmacol Ther, 46, p. 272-8
  2. Sylven C, Beermann B, Kaijser L, Jonzon B (1990) "Nicotine enhances angina pectoris-like chest pain and atriovenricular blockade provoked by intravenous bolus of adenosine in healthy volunteers." J Cardiovasc Pharmacol, 16, p. 962-5

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.