Skip to main content

Drug Interactions between anhydrous calcium iodide / isoproterenol and Avelox I.V.

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

isoproterenol moxifloxacin

Applies to: anhydrous calcium iodide / isoproterenol and Avelox I.V. (moxifloxacin)

MONITOR CLOSELY: Beta-2 adrenergic agonists can cause dose-related prolongation of the QT interval and potassium loss. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s). Clinically significant prolongation of QT interval and hypokalemia occur infrequently when beta-2 adrenergic agonists are inhaled at normally recommended dosages. However, these effects may be more common when the drugs are administered systemically or when recommended dosages are exceeded.

MANAGEMENT: Caution is advised if beta-2 adrenergic agonists are used in combination with other drugs that prolong the QT interval, including class IA and III antiarrhythmic agents, certain neuroleptic agents, phenothiazines, tricyclic antidepressants, quinolones, ketolide and macrolide antibiotics, and cisapride. It may be appropriate to monitor ECG and serum electrolytes during chronic systemic use or high-dose therapy. Patients should be advised to seek medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitations, irregular heartbeat, shortness of breath, or syncope.

References

  1. Whyte KF, Addis GJ, Whitesmith R, Reid JL "The mechanism of salbutamol-induced hypokalaemia." Br J Clin Pharmacol 23 (1987): 65-71
  2. Larsson S, Svedmyr N "Bronchodilating effect and side effects of beta2- adrenoceptor stimulants by different modes of administration (tablets, metered aerosol, and combinations thereof). A study with salbutamol inasthmatics." Am Rev Respir Dis 116 (1977): 861-9
  3. Hastwell G, Lambert BE "The effect of oral salbutamol on serum potassium and blood sugar." Br J Obstet Gynaecol 85 (1978): 767-9
  4. "Hypokalaemia due to salbutamol overdosage." Br Med J (Clin Res Ed) 283 (1981): 500-1
  5. Kantola I, Tarssanen L "Hypokalemia from usual salbutamol dosage ." Chest 89 (1986): 619-20
  6. Wong CS, Pavord ID, Williams J, Britton JR, Tattersfield AE "Bronchodilator, cardiovascular, and hypokalaemic effects of fenoterol, salbutamol, and terbutaline in asthma." Lancet 336 (1990): 1396-9
  7. Gross TL, Sokol RJ "Severe hypokalemia and acidosis: a potential complication of beta- adrenergic treatment." Am J Obstet Gynecol 138 (1980): 1225-6
  8. Clifton GD, Hunt BA, Patel RC, Burki NK "Effects of sequential doses of parenteral terbutaline on plasma levels of potassium and related cardiopulmonary responses." Am Rev Respir Dis 141 (1990): 575-9
  9. Hurlbert BJ, Edelman JD, David K "Serum potassium levels during and after terbutaline." Anesth Analg 60 (1981): 723-5
  10. Bengtsson B, Fagerstrom PO "Extrapulmonary effects of terbutaline during prolonged administration." Clin Pharmacol Ther 31 (1982): 726-32
  11. Gelmont DM, Balmes JR, Yee A "Hypokalemia induced by inhaled bronchodilators." Chest 94 (1988): 763-6
  12. Sanders JP, Potter DE, Ellis S, Bee DE, Grant JA "Metabolic and cardiovascular effects of carbuterol and metaproterenol." J Allergy Clin Immunol 60 (1977): 174-9
  13. "Product Information. Proventil (albuterol)." Schering Corporation PROD (2002):
  14. Windom H, Grainger J, Burgess C, Crane J, Pearce N, Beasley R "A comparison of the haemodynamic and hypokalaemic effects of inhaled pirbuterol and salbutamol." N Z Med J 103 (1990): 259-61
  15. "Product Information. Serevent (salmeterol)." Glaxo Wellcome PROD
  16. "Product Information. Maxair (pirbuterol)." 3M Pharmaceuticals PROD (2001):
  17. Dickens GR, Mccoy RA, West R, Stapczynski JS, Clifton GD "Effect of nebulized albuterol on serum potassium and cardiac rhythm in patients with asthma or chronic obstructive pulmonary disease." Pharmacotherapy 14 (1994): 729-33
  18. Tveskov C, Djurhuus MS, Klitgaard NAH, Egstrup K "Potassium and magnesium distribution, ECG changes, and ventricular ectopic beats during beta(2)-adrenergic stimulation with terbutaline in healthy subjects." Chest 106 (1994): 1654-9
  19. Braden GL, vonOeyen PT, Germain MJ, Watson DJ, Haag BL "Ritodrine- and terbutaline-induced hypokalemia in preterm labor: Mechanisms and consequences." Kidney Int 51 (1997): 1867-75
  20. Rakhmanina NY, Kearns GL, Farrar HC "Hypokalemia in an asthmatic child from abuse of albuterol metered dose inhaler." Pediatr Emerg Care 14 (1998): 145-7
  21. "Product Information. Xopenex (levalbuterol)." Sepracor Inc PROD (2001):
  22. "Product Information. Foradil (formoterol)." Novartis Pharmaceuticals PROD (2001):
  23. Ferguson GT, Funck-Brentano C, Fischer T, Darken P, Reisner C "Cardiovascular Safety of Salmeterol in COPD." Chest 123 (2003): 1817-24
  24. Milic M, Bao X, Rizos D, Liu F, Ziegler MG "Literature review and pilot studies of the effect of qt correction formulas on reported beta(2)-agonist-induced QTc prolongation." Clin Ther 28 (2006): 582-90
  25. "Product Information. Brovana (arformoterol)." Sepracor Inc (2006):
  26. Lowe MD, Rowland E, Brown MJ, Grace AA "Beta(2) adrenergic receptors mediate important electrophysiological effects in human ventricular myocardium." Heart 86 (2001): 45-51
  27. Sun ZH, Swan H, Vitasalo M, Toivonen L "Effects of epinephrine and phenylephrine on QT interval dispersion in congenital long QT syndrome." J Am Coll Cardiol 31 (1998): 1400-5
View all 27 references

Switch to consumer interaction data

Moderate

anhydrous calcium iodide moxifloxacin

Applies to: anhydrous calcium iodide / isoproterenol and Avelox I.V. (moxifloxacin)

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of quinolone antibiotics. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of quinolones by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract. The bioavailability of ciprofloxacin has been reported to decrease by as much as 90% when administered with antacids containing aluminum or magnesium hydroxide.

MANAGEMENT: When coadministration cannot be avoided, quinolone antibiotics should be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation-containing products to minimize the potential for interaction. When coadministered with Suprep Bowel Prep (magnesium/potassium/sodium sulfates), the manufacturer recommends administering fluoroquinolone antibiotics at least 2 hours before and not less than 6 hours after Suprep Bowel Prep to avoid chelation with magnesium. Please consult individual product labeling for specific recommendations.

References

  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother 33 (1989): 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther 46 (1989): 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother 34 (1990): 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother 36 (1992): 830-2
  5. Yuk JH "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc 262 (1989): 901
  6. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother 33 (1989): 1901-7
  7. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol 33 (1992): 115-6
  8. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother 33 (1989): 99-102
  9. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother 34 (1990): 432-5
  10. Akerele JO, Okhamafe AO "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother 28 (1991): 87-94
  11. Wadworth AN, Goa KL "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs 42 (1991): 1018-60
  12. Shimada J, Shiba K, Oguma T, et al. "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother 36 (1992): 1219-24
  13. Sahai J, Healy DP, Stotka J, Polk RE "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol 35 (1993): 302-4
  14. Lehto P, Kivisto KT "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother 38 (1994): 248-51
  15. Noyes M, Polk RE "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med 109 (1988): 168-9
  16. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother 33 (1989): 615-7
  17. Lehto P, Kivisto KT "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther 56 (1994): 477-82
  18. Spivey JM, Cummings DM, Pierson NR "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy 16 (1996): 314-6
  19. "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical PROD (2001):
  20. "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome PROD (2001):
  21. "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer PROD (2001):
  22. "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals PROD (2001):
  23. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother 39 Suppl B (1997): 93-7
  24. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother 41 (1997): 1668-72
  25. Honig PK, Gillespie BK "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet 35 (1998): 167-71
  26. Johnson RD, Dorr MB, Talbot GH, Caille G "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther 20 (1998): 1149-58
  27. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother 43 (1999): 1067-71
  28. Allen A, Vousden M, Porter A, Lewis A "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy 45 (1999): 504-11
  29. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol 49 (2000): 98-103
  30. "Product Information. Factive (gemifloxacin)." *GeneSoft Inc (2003):
  31. "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories (2010):
  32. "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc. (2017):
View all 32 references

Switch to consumer interaction data

Drug and food interactions

Moderate

isoproterenol food

Applies to: anhydrous calcium iodide / isoproterenol

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.