Drug Interactions between amprenavir and sufentanil
This report displays the potential drug interactions for the following 2 drugs:
- amprenavir
- sufentanil
Interactions between your drugs
SUFentanil amprenavir
Applies to: sufentanil and amprenavir
MONITOR: Coadministration with potent inhibitors of CYP450 3A4 may increase the plasma concentrations of sufentanil, which is primarily metabolized by the isoenzyme. Increased sufentanil concentrations may enhance or prolong pharmacologic effects and potentiate the risk of central nervous system and respiratory depression. In six healthy volunteers, pretreatment with erythromycin (500 mg twice a day for 7 days) had no significant effects on the pharmacokinetics of sufentanil (3 mcg/kg single IV dose) relative to placebo in the nine hours following administration. However, in vitro data suggest that other potent CYP450 3A4 inhibitors (e.g., itraconazole, ketoconazole, ritonavir) may interfere with the metabolism of sufentanil.
MANAGEMENT: Patients receiving sufentanil with potent CYP450 3A4 inhibitors should be carefully monitored for excessive central nervous system and respiratory depression, and dosage adjustments made accordingly if necessary.
References (3)
- Bartkowski RR, Goldberg ME, Huffnagle S, Epstein RH (1993) "Sufentanil disposition. Is it affected by erythromycin administration?" Anesthesiology, 78, p. 260-5
- (2001) "Product Information. Sufenta (sufentanil)." Janssen Pharmaceuticals
- Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M (1996) "Identification of human cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation." Anesth Analg, 82, p. 167-72
Drug and food interactions
amprenavir food
Applies to: amprenavir
GENERALLY AVOID: Administration with a high-fat meal may decrease the oral bioavailability of amprenavir. The mechanism is unknown. In healthy volunteers, consumption of a standardized high-fat meal decreased the peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of amprenavir (1200 mg single oral dose) by 36% and 21%, respectively, compared to administration in the fasted state. The time to reach Cmax (Tmax) was increased 44% following a high-fat meal.
Grapefruit juice does not appear to significantly affect the pharmacokinetics of amprenavir. In 12 healthy volunteers, administration with grapefruit juice (200 mL) decreased the mean peak plasma concentration (Cmax) of amprenavir (1200 mg single oral dose) by 22% compared to water. The median time to reach Cmax (Tmax) was prolonged from 0.75 to 1.13 hours. These pharmacokinetic changes are not thought to be clinically significant, since antiretroviral response is more closely associated with systemic exposure (AUC) and trough plasma concentration (Cmin), which were not affected in the study.
MANAGEMENT: Amprenavir may be taken with or without food, but should not be taken with a high-fat meal.
References (2)
- (2001) "Product Information. Agenerase (amprenavir)." Glaxo Wellcome
- Demarles D, Gillotin C, Bonaventure-Paci S, Vincent I, Fosse S, Taburet AM (2002) "Single-dose pharmacokinetics of amprenavir coadministered with grapefruit juice." Antimicrob Agents Chemother, 46, p. 1589-1590
SUFentanil food
Applies to: sufentanil
GENERALLY AVOID: Ethanol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.
MANAGEMENT: Concomitant use of opioid analgesics with ethanol should be avoided.
References (9)
- Linnoila M, Hakkinen S (1974) "Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving." Clin Pharmacol Ther, 15, p. 368-73
- Sturner WQ, Garriott JC (1973) "Deaths involving propoxyphene: a study of 41 cases over a two-year period." JAMA, 223, p. 1125-30
- Girre C, Hirschhorn M, Bertaux L, et al. (1991) "Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers." Eur J Clin Pharmacol, 41, p. 147-52
- Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
- Sellers EM, Hamilton CA, Kaplan HL, Degani NC, Foltz RL (1985) "Pharmacokinetic interaction of propoxyphene with ethanol." Br J Clin Pharmacol, 19, p. 398-401
- Carson DJ (1977) "Fatal dextropropoxyphene poisoning in Northern Ireland. Review of 30 cases." Lancet, 1, p. 894-7
- Rosser WW (1980) "The interaction of propoxyphene with other drugs." Can Med Assoc J, 122, p. 149-50
- Edwards C, Gard PR, Handley SL, Hunter M, Whittington RM (1982) "Distalgesic and ethanol-impaired function." Lancet, 2, p. 384
- Kiplinger GF, Sokol G, Rodda BE (1974) "Effect of combined alcohol and propoxyphene on human performance." Arch Int Pharmacodyn Ther, 212, p. 175-80
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.