Skip to main content

Drug Interactions between amoxicillin / clarithromycin / lansoprazole and levofloxacin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

clarithromycin lansoprazole

Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole

MONITOR: Coadministration with clarithromycin may increase the plasma concentrations of lansoprazole. The proposed mechanism is clarithromycin inhibition of intestinal (first-pass) and hepatic metabolism of lansoprazole via CYP450 3A4. Although lansoprazole is primarily metabolized by CYP450 2C19 in the liver, 3A4-mediated metabolism is the predominant pathway in individuals who are 2C19-deficient (approximately 3% to 5% of the Caucasian and 17% to 20% of the Asian population). Additionally, inhibition of P-glycoprotein intestinal efflux transporter by clarithromycin may also contribute to the interaction, resulting in increased bioavailability of lansoprazole. In 18 healthy volunteers--six each of homozygous extensive metabolizers (EMs), heterozygous EMs, and poor metabolizers (PMs) of CYP450 2C19--clarithromycin (400 mg orally twice a day for 6 days) increased the peak plasma concentration (Cmax) of a single 60 mg oral dose of lansoprazole by 1.47, 1.71- and 1.52-fold, respectively, and area under the concentration-time curve (AUC) by 1.55-, 1.74- and 1.80-fold, respectively, in each of these groups compared to placebo. The AUC ratio of lansoprazole to lansoprazole sulphone, which is considered an index of CYP450 3A4 activity, was significantly increased by clarithromycin in all three groups. However, elimination half-life of lansoprazole was prolonged by 1.54-fold only in PMs. Mild diarrhea was reported in two subjects and mild abdominal disturbance in six subjects during clarithromycin coadministration. These side effects continued until day 6 and ameliorated the day after discontinuation of clarithromycin, whereas no adverse events were reported during placebo administration or after lansoprazole plus placebo. In another study, clarithromycin induced dose-dependent increases in the plasma concentration of lansoprazole in a group of 20 patients receiving treatment for H. pylori eradication. Mean 3-hour plasma lansoprazole concentration was 385 ng/mL for the control subjects who received lansoprazole 30 mg and amoxicillin 750 mg twice a day for 7 days; 696 ng/mL for patients coadministered clarithromycin 200 mg twice a day; and 947 ng/mL for patients coadministered clarithromycin 400 mg twice a day.

MANAGEMENT: Although lansoprazole is generally well tolerated, caution may be advised during coadministration with clarithromycin, particularly if higher dosages of one or both drugs are used. Dosage adjustment may be necessary in patients who experience excessive adverse effects of lansoprazole.

References

  1. Ushiama H, Echizen H, Nachi S, Ohnishi A (2002) "Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol." Clin Pharmacol Ther, 72, p. 33-43
  2. Saito M, Yasui-Furukori N, Uno T, et al. (2005) "Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes." Br J Clin Pharmacol, 59, p. 302-9
  3. Miura M, Tada H, Yasui-Furukori N, et al. (2005) "Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes." Chirality, 17, p. 338-344

Switch to consumer interaction data

Moderate

clarithromycin levoFLOXacin

Applies to: amoxicillin / clarithromycin / lansoprazole and levofloxacin

MONITOR: Certain quinolones, including levofloxacin, norfloxacin, and ofloxacin, may cause dose-related prolongation of the QT interval in some patients. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. During postmarketing surveillance, rare cases of torsade de pointes and ventricular tachycardia have been reported in patients taking levofloxacin, norfloxacin, and ofloxacin. The levofloxacin cases primarily involved patients with underlying medical conditions or taking concomitant medications that may have been contributory. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Although the risk of a serious interaction is probably low, caution is recommended if levofloxacin, norfloxacin, or ofloxacin is used in combination with other drugs that can prolong the QT interval. Since the magnitude of QTc prolongation increases with increasing plasma concentrations of the quinolone, recommended dosages and intravenous infusion rates should not be exceeded. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. (2001) "Product Information. Floxin (ofloxacin)." Ortho McNeil Pharmaceutical
  2. Thomas M, Maconochie JG, Fletcher E (1996) "The dilemma of the prolonged QT interval in early drug studies." Br J Clin Pharmacol, 41, p. 77-81
  3. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  4. Samaha FF (1999) "QTC interval prolongation and polymorphic ventricular tachycardia in association with levofloxacin." Am J Med, 107, p. 528-9
  5. Iannini PB, Doddamani S, Byazrova E, Curciumaru I, Kramer H (2001) "Risk of torsades de pointes with non-cardiac drugs. Prolongation of QT interval is probably a class effect of fluoroquinolones." Br Med J, 322, p. 46-7
  6. Owens RC (2001) "Risk assessment for antimicrobial agent-induced QTc interval prolongation and torsades de pointes." Pharmacotherapy, 21, p. 301-19
  7. Ball P (2000) "Quinolone-induced QT interval prolongation: a not-so-unexpected class effect." J Antimicrob Chemother, 45, p. 557-9
  8. Kang J, Wang L, Chen XL, Triggle DJ, Rampe D (2001) "Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG." Mol Pharmacol, 59, p. 122-6
  9. Kahn JB (2001) "Latest industry information on the safety profile of levofloxacin in the US." Chemotherapy, 47 Suppl 3, p. 32-7
  10. Frothingham R (2001) "Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin." Pharmacotherapy, 21, p. 1468-72
  11. Oliphant CM, Green GM (2002) "Quinolones: a comprehensive review." Am Fam Physician, 65, p. 455-64
  12. Owens RC Jr, Ambrose PG (2002) "Torsades de pointes associated with fluoroquinolones." Pharmacotherapy, 22, 663-8; discussion 668-72
  13. Noel GJ, Natarajan J, Chien S, Hunt TL, Goodman DB, Abels R (2003) "Effects of three fluoroquinolones on QT interval in healthy adults after single doses." Clin Pharmacol Ther, 73, p. 292-303
  14. Iannini PB (2002) "Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval." Expert Opin Drug Saf, 1, p. 121-8
  15. Owens RC (2004) "QT Prolongation with Antimicrobial Agents : Understanding the Significance." Drugs, 64, p. 1091-124
  16. Nykamp DL, Blackmon CL, Schmidt PE, Roberson AG (2005) "QTc prolongation associated with combination therapy of levofloxacin, imipramine, and fluoxetine." Ann Pharmacother, 39, p. 543-6
  17. Katritsis D, Camm AJ (2003) "Quinolones: cardioprotective or cardiotoxic." Pacing Clin Electrophysiol, 26, p. 2317-20
  18. Stahlmann R (2002) "Clinical toxicological aspects of fluoroquinolones." Toxicol Lett, 127, p. 269-77
  19. Makaryus AN, Byrns K, Makaryus MN, Natarajan U, Singer C, Goldner B (2006) "Effect of ciprofloxacin and levofloxacin on the QT interval: is this a significant "clinical" event?" South Med J, 99, p. 52-6
  20. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  21. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  22. Falagas ME, Rafailidis PI, Rosmarakis ES (2007) "Arrhythmias associated with fluoroquinolone therapy." Int J Antimicrob Agents, 29, p. 374-9
  23. Cerner Multum, Inc. "Australian Product Information."
View all 23 references

Switch to consumer interaction data

Minor

amoxicillin clarithromycin

Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole

Although some in vitro data indicate synergism between macrolide antibiotics and penicillins, other in vitro data indicate antagonism. When these drugs are given together, neither has predictable therapeutic efficacy. Data are available for erythromycin, although theoretically this interaction could occur with any macrolide. Except for monitoring of the effectiveness of antibiotic therapy, no special precautions appear to be necessary.

References

  1. Strom J (1961) "Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them." Antibiot Chemother, 11, p. 694-7
  2. Cohn JR, Jungkind DL, Baker JS (1980) "In vitro antagonism by erythromycin of the bactericidal action of antimicrobial agents against common respiratory pathogens." Antimicrob Agents Chemother, 18, p. 872-6
  3. Penn RL, Ward TT, Steigbigel RT (1982) "Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of listeria monocytogenes." Antimicrob Agents Chemother, 22, p. 289-94

Switch to consumer interaction data

Drug and food interactions

Moderate

levoFLOXacin food

Applies to: levofloxacin

ADJUST DOSING INTERVAL: Food may reduce the oral absorption and bioavailability of levofloxacin. According to the drug product labeling, administration of levofloxacin 500 mg with food prolonged the time to peak concentration by 1 hour and decreased the Cmax decreased by 25% following administration of the oral solution and by 14% following administration of the oral tablet.

MANAGEMENT: To ensure maximal and consistent oral absorption, levofloxacin oral solution should be taken at least one hour before or two hours after meals. For administration of the oral solution with continuous enteral nutrition, some experts recommend that the tube feeding should be interrupted for one hour before and two hours after the dose of levofloxacin. The oral tablets may be taken without regard to food.

References

  1. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67

Switch to consumer interaction data

Minor

clarithromycin food

Applies to: amoxicillin / clarithromycin / lansoprazole

Grapefruit juice may delay the gastrointestinal absorption of clarithromycin but does not appear to affect the overall extent of absorption or inhibit the metabolism of clarithromycin. The mechanism of interaction is unknown but may be related to competition for intestinal CYP450 3A4 and/or absorptive sites. In an open-label, randomized, crossover study consisting of 12 healthy subjects, coadministration with grapefruit juice increased the time to reach peak plasma concentration (Tmax) of both clarithromycin and 14-hydroxyclarithromycin (the active metabolite) by 80% and 104%, respectively, compared to water. Other pharmacokinetic parameters were not significantly altered. This interaction is unlikely to be of clinical significance.

References

  1. Cheng KL, Nafziger AN, Peloquin CA, Amsden GW (1998) "Effect of grapefruit juice on clarithromycin pharmacokinetics." Antimicrob Agents Chemother, 42, p. 927-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.