Drug Interactions between amitriptyline and quetiapine
This report displays the potential drug interactions for the following 2 drugs:
- amitriptyline
- quetiapine
Interactions between your drugs
amitriptyline QUEtiapine
Applies to: amitriptyline and quetiapine
GENERALLY AVOID: There is some concern that quetiapine may have additive cardiovascular effects in combination with other drugs that are known to prolong the QT interval of the electrocardiogram. In clinical trials, quetiapine was not associated with a persistent increase in QT intervals, and there was no statistically significant difference between quetiapine and placebo in the proportions of patients experiencing potentially important changes in ECG parameters including QT, QTc, and PR intervals. However, QT prolongation and torsade de pointes have been reported during post marketing use in cases of quetiapine overdose and in patients with risk factors such as underlying illness or concomitant use of drugs known to cause electrolyte imbalance or increase QT interval. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). The extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s). In addition, certain agents with anticholinergic properties (e.g., sedating antihistamines; antispasmodics; neuroleptics; phenothiazines; skeletal muscle relaxants; tricyclic antidepressants) may have additive parasympatholytic and central nervous system-depressant effects when used in combination with quetiapine. Excessive parasympatholytic effects may include paralytic ileus, hyperthermia, mydriasis, blurred vision, tachycardia, urinary retention, psychosis, and seizures.
MONITOR: Coadministration of quetiapine with drugs that possess serotonergic activity (e.g., selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), etc.) may increase the risk of serotonin syndrome, a rare but serious and potentially fatal condition. Combining quetiapine with other serotonergic drugs may increase the risk of serotonin syndrome by relatively enhancing 5-HT1A receptor activity. However, data are currently limited to case reports. In one case report, an 85-year-old woman developed serotonin syndrome within hours of increasing quetiapine from 12.5 mg to 25 mg/day while also taking escitalopram, mirtazapine, sulpiride, and olanzapine; symptoms resolved within 48 hours after the discontinuation of all serotonergic medications. Symptoms of serotonin syndrome may include mental status changes such as irritability, altered consciousness, confusion, hallucination, and coma; autonomic dysfunction such as tachycardia, hyperthermia, diaphoresis, shivering, blood pressure lability, and mydriasis; neuromuscular abnormalities such as hyperreflexia, myoclonus, tremor, rigidity, and ataxia; and gastrointestinal symptoms such as abdominal cramping, nausea, vomiting, and diarrhea.
MANAGEMENT: Coadministration of quetiapine with other drugs that can prolong the QT interval should generally be avoided. Caution and clinical monitoring are recommended if concomitant use of quetiapine with other agents that both prolong the QT interval and possess or enhance serotonergic activity is required. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope. Patients should also be monitored closely for, and counseled about the signs and symptoms of serotonin syndrome (e.g., altered mental status, hypertension, restlessness, myoclonus, hyperthermia, hyperreflexia, diaphoresis, shivering, and tremor), especially during initiation and dose escalations. Due to variability and occasionally prolonged half-lives of these coadministered agents, consulting individual product labeling for specific guidance is advised.
References (7)
- (2023) "Product Information. Aliquen (QUETIAPine)." Pharmacor Limited
- (2024) "Product Information. Mintreleq XL (quetiapine)." Aristo Pharma Ltd
- (2025) "Product Information. QUEtiapine Fumarate (QUEtiapine)." XLCare Pharmaceuticals, Inc
- (2024) "Product Information. QUEtiapine Fumarate ER (QUEtiapine)." ScieGen Pharmaceuticals, Inc.
- (2025) "Product Information. Apo-Quetiapine (quetiapine)." Apotex Inc
- Miyamatsu, Y., Tanizaki, R. (2021) "Serotonin syndrome triggered by increasing the dose of quetiapine" Clinical practice and cases in emergency medicine, 5, p. 365-366
- Kohen, I., Gordon, M.L., Manu, P. (2007) "Serotonin syndrome in elderly patients treated for psychotic depression with atypical antipsychotics and antidepressants: two case reports" CNS Spectr, 12, p. 596-8
Drug and food/lifestyle interactions
amitriptyline food/lifestyle
Applies to: amitriptyline
GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.
MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.
References (7)
- Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
- Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
- Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
- Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
- Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
amitriptyline food/lifestyle
Applies to: amitriptyline
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.