Skip to main content

Drug Interactions between amitriptyline and ivabradine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

amitriptyline ivabradine

Applies to: amitriptyline and ivabradine

GENERALLY AVOID: Due to its bradycardic effects, the risk of QT prolongation and torsade de pointes arrhythmia may be increased when ivabradine is used with drugs that prolong the QT interval. In clinical studies in adult patients, the rate of bradycardia was 6.0% versus 1.3% per patient-year for ivabradine compared to placebo. Asymptomatic and symptomatic bradycardia were observed in 6.8% and 4.1% of the pediatric patients treated with ivabradine compared to 2.4% and 0% in the placebo treatment group, respectively. At recommended dosages of ivabradine, heart rate reduction is approximately 10 beats per minute at rest and during exercise. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Coadministration of ivabradine with drugs that can prolong the QT interval should generally be avoided. Caution and cardiac monitoring are recommended if concomitant use is required. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Mittal SR (2014) "Slow junctional rhythm, QTc prolongation and transient torsades de-pointes following combined use of Ivabradine, Diltiazem and Ranolazine." J Assoc Physicians India, 62, p. 426-7
  3. (2022) "Product Information. Corlanor (ivabradine)." Amgen USA

Drug and food interactions

Major

ivabradine food

Applies to: ivabradine

GENERALLY AVOID: Grapefruit juice may significantly increase the plasma concentrations of ivabradine. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. According to the product labeling, administration with grapefruit juice (quantity unknown) resulted in an approximately twofold increase in ivabradine systemic exposure (AUC). Elevated plasma levels of ivabradine may increase the risk of excessive bradycardia and conduction disturbances.

ADJUST DOSING INTERVAL: Food delays the absorption of ivabradine by approximately 1 hour and increases plasma exposure by 20% to 40% compared to fasting conditions.

MANAGEMENT: Patients treated with ivabradine should avoid or limit consumption of grapefruit or grapefruit juice. The manufacturer recommends taking ivabradine with meals to reduce variability in exposure.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2015) "Product Information. Corlanor (ivabradine)." Amgen USA
Moderate

amitriptyline food

Applies to: amitriptyline

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References (7)
  1. Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
  2. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
Moderate

amitriptyline food

Applies to: amitriptyline

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.