Skip to main content

Drug Interactions between amitriptyline / perphenazine and Mudrane GG

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

amitriptyline ePHEDrine

Applies to: amitriptyline / perphenazine and Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital)

GENERALLY AVOID: Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents and vasoconstrictor-containing local anesthetics. Several-fold increases in the effects of norepinephrine and, to a lesser extent, epinephrine and phenylephrine were reported in healthy subjects pretreated with desipramine, imipramine, or nortriptyline. The mechanism is TCA inhibition of norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, hypertension, throbbing headache, tremor, palpitation, chest pain, and cardiac dysrhythmia have been reported in association with this interaction. Various TCAs have been implicated including amitriptyline, desipramine, imipramine, nortriptyline, and protriptyline. It is not known whether the interaction also occurs with mixed-acting sympathomimetic agents (e.g., dopamine, ephedrine, metaraminol).

MANAGEMENT: Parenteral administration of direct-acting sympathomimetic agents should preferably be avoided during therapy with tricyclic antidepressants except in cases of emergency (e.g., treatment of anaphylaxis). If concomitant use is necessary, initial dose and rate of administration of the sympathomimetic should be reduced, and cardiovascular status including blood pressure should be monitored closely. Although clinical data are lacking, it may be prudent to follow the same precaution with mixed-acting sympathomimetic agents.

References

  1. Mitchell JR, Cavanaugh JH, Arias L, Oates JA (1970) "Guanethidine and related agents. III: antagonism by drugs which inhibit the norepinephrine pump in man." J Clin Invest, 49, p. 1596-604
  2. Svedmyr N (1968) "The influence of a tricyclic antidepressive agent (protriptyline) on some of the circulatory effects of noradrenaline and adrenaline in man." Life Sci, 7, p. 77-84
  3. Boakes AJ, Laurence DR, Teoh PC, Barar FS, Benedikter LT, Pritchard BN (1973) "Interactions between sympathomimetic amines and antidepressant agents in man." Br Med J, 1, p. 311-5
  4. Borg KO, Johnsson G, Jordo L, Lundborg P, Ronn O, Welin-Fogelberg I (1979) "Interaction studies between three antidepressant drugs (zimelidine, imipramine and chlorimipramine) and noradrenaline in healthy volunteers and some pharmacokinetics of the drugs studied." Acta Pharmacol Toxicol (Copenh), 45, p. 198-205
  5. Linnoila M, Karoum F, Calil HM, Kopin IJ, Potter WZ (1982) "Alteration of norepinephrine metabolism with desipramine and zimelidine in depressed patients." Arch Gen Psychiatry, 39, p. 1025-8
  6. ed., Boakes AJ. Vasoconstrictors in local anaesthetics and tricyclic antidepressants. In: Grahame-Smith, DG (1977) "Drug Interactions. QV 38 D7932 1975." Baltimore, MD: University Park Press, p. 275-83
  7. Fritz H, Hagstam KE, Lindqvist B (1965) "Local skin necrosis after intravenous infusion of norepinephrine, and the concept of endotoxinaemia. A clinical study on 10 cases." Acta Med Scand, 178, p. 403-16
  8. Teba L, Schiebel F, Dedhia HV, Lazzell VA (1988) "Beneficial effect of norepinephrine in the treatment of circulatory shock caused by tricyclic antidepressant overdose." Am J Emerg Med, 6, p. 566-8
  9. Goulet JP, Perusse R, Turcotte JY (1992) "Contraindications to vasoconstrictors in dentistry: Part III. Pharmacologic interactions." Oral Surg Oral Med Oral Pathol, 74, p. 692-7
  10. Niemegeers CJ, Lenaerts FM, Artois KS, Janssen PA (1977) "Interaction of drugs with apomorphine, tryptamine and norepinephrine. A new 'in vivo' approach: the ATN-test in rats." Arch Int Pharmacodyn Ther, 227, p. 238-53
  11. Ghose K (1980) "Sympathomimetic amines and tricyclic antidepressant drugs." Neuropharmacology, 19, p. 1251-4
View all 11 references

Switch to consumer interaction data

Moderate

amitriptyline PHENobarbital

Applies to: amitriptyline / perphenazine and Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital)

MONITOR: Tricyclic antidepressants may counteract the anticonvulsive effects of barbiturates by lowering the seizure threshold. Barbiturates may decrease the serum levels and effects of tricyclic antidepressants by induction of hepatic metabolism. In addition, the respiratory-depressant effects of both agents may be increased due to additive pharmacologic effects.

MANAGEMENT: If the barbiturate is being taken for a seizure disorder, patients should be closely monitored for loss of seizure control. Dose adjustments may be required. Monitoring for clinical evidence of additive toxicity and for clinical and/or laboratory evidence of reduced antidepressant effect is also advisable.

References

  1. Crocker J, Morton B (1969) "Tricyclic (antidepressant) drug toxicity." Clin Toxicol, 2, p. 397-402
  2. Burrows GD, Davies B (1971) "Antidepressants and barbiturates." Br Med J, 4, p. 113
  3. Silverman G, Braithwaite R (1972) "Interaction of benzodiazepines with tricyclic antidepressants." Br Med J, 4, p. 111
  4. Spina E, Avenoso A, Campo GM, Caputi AP, Perucca E (1996) "Phenobarbital induces the 2-hydroxylation of desipramine." Ther Drug Monit, 18, p. 60-4
  5. Garey KW, Amsden GW, Johns CA (1997) "Possible interaction between imipramine and butalbital." Pharmacotherapy, 17, p. 1041-2
View all 5 references

Switch to consumer interaction data

Moderate

PHENobarbital aminophylline

Applies to: Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital) and Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital)

MONITOR: Barbiturates may decrease serum levels and therapeutic effects of the methylxanthines. The mechanism is barbiturate induction of CYP450 3A4 and 1A2 hepatic metabolism of methylxanthines.

MANAGEMENT: Close observation for clinical and laboratory evidence of decreased methylxanthine effect is indicated if these drugs must be used together. Patients should be advised to notify their physician if they experience a worsening of their respiratory symptoms.

References

  1. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  2. Bukowskyj M, Nakatsu K, Munt PW (1984) "Theophylline reassessed." Ann Intern Med, 101, p. 63-73
  3. Landay RA, Gonzalez MA, Taylor JC (1978) "Effect of phenobarbital on theophylline disposition." J Allergy Clin Immunol, 62, p. 27-9
  4. Dahlqvist R, Steiner E, Koike Y, von Bahr C, Lind M, Billing B (1989) "Induction of theophylline metabolism by pentobarbital." Ther Drug Monit, 11, p. 408-10
View all 4 references

Switch to consumer interaction data

Moderate

amitriptyline perphenazine

Applies to: amitriptyline / perphenazine and amitriptyline / perphenazine

MONITOR: Coadministration of a phenothiazine with a tricyclic antidepressant (TCA) may result in elevated plasma concentrations of one or both drugs as well as additive adverse effects. Most phenothiazines and TCAs have been found to undergo metabolism by CYP450 2D6, thus competitive inhibition of the enzyme may occur when more than one of these agents are administered. Although these drugs have been used together clinically, the possibility of increased risk of serious adverse effects such as central nervous system depression, tardive dyskinesia, hypotension, and prolongation of the QT interval should be considered, as many of these agents alone can and have produced these effects. In addition, excessive anticholinergic effects may occur in combination use, which can result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of anticholinergic intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures.

MANAGEMENT: Concurrent use of phenothiazines and TCAs should be approached with caution, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication (e.g., abdominal pain, fever, heat intolerance, blurred vision, confusion, hallucinations) or cardiovascular toxicity (e.g., dizziness, palpitations, arrhythmias, syncope). Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A dosage reduction in one or both drugs may be necessary if excessive adverse effects develop.

References

  1. Loga S, Curry S, Lader M (1981) "Interaction of chlorpromazine and nortriptyline in patients with schizophrenia." Clin Pharmacokinet, 6, p. 454-62
  2. Stadnyk AN, Glezos JD (1983) "Drug-induced heat stroke." Can Med Assoc J, 128, p. 957-9
  3. Bock JL, Nelson JC, Gray S, Jatlow PI (1983) "Desipramine hydroxylation: variability and effect of antipsychotic drugs." Clin Pharmacol Ther, 33, p. 322-8
  4. Gram LF, Overo KF (1972) "Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man." Br Med J, 1, p. 463-5
  5. El-Yousef MK, Manier DH (1974) "Tricyclic antidepressants and phenothiazines." JAMA, 229, p. 1419
  6. Hirschowitz J, Bennett JA, Zemlan FP, Garver DL (1983) "Thioridazine effect on desipramine plasma levels." J Clin Psychopharmacol, 3, p. 376-9
  7. Vandel S, Sandoz M, Vandel B, Bonin B, Allers G, Volmat R (1986) "Biotransformation of amitriptyline in man: interaction with phenothiazines." Neuropsychobiology, 15, p. 15-9
  8. Zelman S, Guillan R (1970) "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry, 126, p. 1787-90
  9. Mann SC, Boger WP (1978) "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry, 135, p. 1097-100
  10. Warnes H, Lehmann HE, Ban TA (1967) "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J, 96, p. 1112-3
  11. Siris SG, Cooper TB, Rifkin AE, Brenner R, Lieberman JA (1982) "Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate." Am J Psychiatry, 139, p. 104-6
  12. Johnson AL, Hollister LE, Berger PA (1981) "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry, 42, p. 313-7
  13. Lee BS (1986) "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry, 47, p. 571
  14. Moreau A, Jones BD, Banno V (1986) "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry, 31, p. 339-41
  15. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA (1983) "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm, 2, p. 174-8
  16. Maynard GL, Soni P (1996) "Thioridazine interferences with imipramine metabolism and measurement." Ther Drug Monit, 18, p. 729-31
View all 16 references

Switch to consumer interaction data

Moderate

PHENobarbital perphenazine

Applies to: Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital) and amitriptyline / perphenazine

MONITOR: Concomitant use of phenothiazines with barbiturates may reduce the plasma concentrations and therapeutic effects of both agents. The mechanism is unclear but may relate to metabolic induction of CYP450 hepatic enzymes. In addition, coadministration of phenothiazines and barbiturates may lead to a reduction in seizure threshold and additive central nervous system (CNS) and respiratory depressant effects.

MANAGEMENT: Administration of phenothiazines in patients receiving large doses of barbiturates is considered contraindicated by some authorities (US). If coadministration is required, caution as well as clinical and laboratory monitoring should be considered whenever either of these agents is added to or withdrawn from therapy. If chlorpromazine is coadministered with a barbiturate, the manufacturer of chlorpromazine recommends using 1/4 to 1/2 of the usual barbiturate dosage. Patients should be monitored for hypotension, loss of seizure control and the development of adverse effects including CNS and respiratory depression.

References

  1. Harashima H, Sugiyama Y, Sawada Y, Shigenobu K, Kasuya Y, Iga T, Hanano M (1988) "Kinetic analysis of the positive inotropic action (PIA) of ouabain in isolated perfused rabbit heart. Slow onset of PIA and slow binding to Na+, K+-adenosine triphosphatase." J Pharmacobiodyn, 11, p. 533-40
  2. Dundee JW, Moore J (1961) "The effects of premedication with phenothiazine derivatives on the course of methohexitone anaesthesia." Br J Anaesth, 33, p. 382-96
  3. Forrest FM, Forrest IS, Serra MT (1970) "Modification of chlorpromazine metabolism by some other drugs frequently administered to psychiatric patients." Biol Psychiatry, 2, p. 53-8
  4. Linnoila M, Viukari M, Vaisanen K, Auvinen J (1980) "Effect of anticonvulsants on plasma haloperidol and thioridazine levels." Am J Psychiatry, 137, p. 819-21
  5. Ellenor GL, Musa MN, Beuthin FC (1978) "Phenobarbital-thioridazine interaction in man." Res Commun Chem Pathol Pharmacol, 21, p. 185-8
  6. Gay PE, Madsen JA (1983) "Interaction between phenobarbital and thioridazine." Neurology, 33, p. 1631-2
  7. Ellenor GL, Musa MN, Beuthin FC (1978) "Phenobarbital--thioridazine interaction in man." Res Commun Chem Pathol Pharmacol, 21, p. 185-8
  8. (2022) "Product Information. FluPHENAZine Decanoate (fluPHENAZine)." Mylan Institutional LLC
  9. (2019) "Product Information. Perphenazine (perphenazine)." Actavis Pharma, Inc.
  10. (2019) "Product Information. Trifluoperazine Hydrochloride (trifluoperazine)." Mylan Institutional (formerly UDL Laboratories)
  11. (2019) "Product Information. Thioridazine Hydrochloride (thioridazine)." Mylan Institutional (formerly UDL Laboratories)
View all 11 references

Switch to consumer interaction data

Moderate

ePHEDrine perphenazine

Applies to: Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital) and amitriptyline / perphenazine

GENERALLY AVOID: Phenothiazines may antagonize the pharmacologic effects of amphetamine, amphetamine derivatives, and other centrally-acting sympathomimetic agents (i.e., CNS stimulants). Conversely, these agents may diminish the neuroleptic efficacy of phenothiazines. The exact mechanism of interaction is unknown but may involve opposing effects on dopaminergic activity. Several clinical studies have demonstrated the reduction or lack of effect of amphetamines on weight loss in obese psychiatric patients treated with chlorpromazine and other neuroleptic agents. In one of these studies, dextroamphetamine also had no effect on sleep patterns. As for the reverse interaction, it is uncertain whether CNS stimulants actually antagonize the neuroleptic effect of phenothiazines, since CNS stimulants alone have been reported to cause or aggravate preexisting psychotic symptoms. Finally, it is conceivable that, because of their sympathomimetic effects, CNS stimulants may also potentiate the arrhythmogenicity of phenothiazines. A case of fatal ventricular arrhythmia was reported in a patient treated chronically with thioridazine who ingested a single capsule containing phenylpropanolamine 50 mg and chlorpheniramine 4 mg. However, a causal relationship was not established.

MANAGEMENT: Amphetamine, amphetamine derivatives, and other CNS stimulants should generally not be used, particularly for weight reduction, in patients treated with phenothiazines.

References

  1. Reid AA (1964) "Pharmacological antagonism between chlorpromazine and phenmetrazine in mental hospital patients." Med J Aust, 1, p. 187-8
  2. Sletten IW, Ognjanov V, Menendez S, Sundland D, El-Toumi A (1967) "Weight reduction with chlorphentermine and phenmetrazine in obese psychiatric patients during chlorpromazine therapy." Curr Ther Res Clin Exp, 9, p. 570-5
  3. Chouinard G, Ghadirian AM, Jones BD (1978) "Death attributed to ventricular arrhythmia induced by thioridazine in combination with a single Contac*C capsule." Can Med Assoc J, 119, p. 729-31
  4. Casey JF, Hollister LE, Klett CJ, Lasky JJ, Caffey EM (1961) "Combined drug therapy of chronic schizophrenics." Am J Psychiatry, 177, p. 997
  5. Modell W, Hussar AE (1965) "Failure of dextroamphetamine sulfate to incluence eating and sleeping patterns in obese schizophrenic patients." JAMA, 193, p. 275-8
  6. Angrist B, Lee HK, Gershon S (1974) "The antagonism of amphetamine-induced symptomatology by a neuroleptic." Am J Psychiatry, 131, p. 817-9
  7. Cornelius JR, Soloff PH, Reynolds CF, 3d (1984) "Paranoia, homicidal behavior, and seizures associated with phenylpropanolamine." Am J Psychiatry, 141, p. 120-1
  8. Achor MB, Extein I (1981) "Diet aids, mania, and affective illness" Am J Psychiatry, 138, p. 392
  9. Schaffer CB, Pauli MW (1980) "Psychotic reaction caused by proprietary oral diet agents." Am J Psychiatry, 137, p. 1256-7
  10. Grieger TA, Clayton AH, Goyer PF (1990) "Affective disorder following use of phenylpropanolamine" Am J Psychiatry, 147, p. 367-8
  11. Dietz AJ, Jr (1981) "Amphetamine-like reactions to phenylpropanolamine." JAMA, 245, p. 601-2
  12. Norvenius G, Widerlov E, Lonnerholm G (1979) "Phenylpropanolamine and mental disturbances" Lancet, 2, p. 1367-8
  13. Mueller SM (1983) "Neurologic complications of phenylpropanolamine use." Neurology, 33, p. 650-2
  14. Lake CR, Tenglin R, Chernow B, Holloway HC (1983) "Psychomotor stimulant-induced mania in a genetically predisposed patient: a review of the literature and report of a case." J Clin Psychopharmacol, 3, p. 97-100
  15. Lake CR (1991) "Manic psychosis after coffee and phenylpropanolamine." Biol Psychiatry, 30, p. 401-4
  16. Lambert MT (1987) "Paranoid psychoses after abuse of proprietary cold remedies." Br J Psychiatry, 151:, p. 548-50
  17. Wharton BK (1970) "Nasal decongestants and paranoid psychosis." Br J Psychiatry, 117, p. 439-40
  18. Dewsnap P, Libby G (1992) "A case of affective psychosis after routine use of proprietary cold remedy containing phenylpropanolamine" Hum Exp Toxicol, 11, p. 295-6
  19. Finton CK, Barton M, Chernow B (1982) "Possible adverse effects of phenylpropanolamine (diet pills) on sympathetic nervous system function--caveat emptor!" Mil Med, 147, p. 1072
  20. Stroe AE, Hall J, Amin F (1995) "Psychotic episode related to phenylpropanolamine and amantadine in a healthy female." Gen Hosp Psychiatry, 17, p. 457-8
  21. Marshall RD, Douglas CJ (1994) "Phenylpropanolamine-induced psychosis: potential predisposing factors." Gen Hosp Psychiatry, 16, p. 358-60
  22. (2001) "Product Information. Fastin (phentermine)." SmithKline Beecham
  23. (2001) "Product Information. Cylert (pemoline)." Abbott Pharmaceutical
  24. (2001) "Product Information. Ritalin (methylphenidate)." Novartis Pharmaceuticals
  25. (2001) "Product Information. Desoxyn (methamphetamine)." Abbott Pharmaceutical
  26. (2001) "Product Information. Dexedrine (dextroamphetamine)." SmithKline Beecham
  27. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  28. (2001) "Product Information. Didrex (benzphetamine)." Pharmacia and Upjohn
  29. (2001) "Product Information. Prelu-2 (phendimetrazine)." Boehringer-Ingelheim
  30. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  31. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  32. Markowitz JS, Patrick KS (2001) "Pharmacokinetic and pharmacodynamic drug interactions in the treatment of attention-deficit hyperactivity disorder." Clin Pharmacokinet, 40, p. 753-72
  33. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  34. (2007) "Product Information. Vyvanse (lisdexamfetamine)." Shire US Inc
View all 34 references

Switch to consumer interaction data

Minor

ePHEDrine aminophylline

Applies to: Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital) and Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital)

Ephedrine-methylxanthine combinations are used for the treatment of asthma but the efficacy of the combination has been questioned. This combination may lead to increased xanthine side effects. The mechanism is unknown, but may be related to synergistic pharmacologic effects. Patients using this combination should be closely monitored for side effects such as nausea, vomiting, tachycardia, nervousness, or insomnia. If side effects are noted, the dosage of the xanthine may need to be decreased.

References

  1. Weinberger M, Bronsky E, Bensch GW, Bock GN, Yecies JJ (1975) "Interaction of ephedrine and theophylline." Clin Pharmacol Ther, 17, p. 585-92
  2. Sims JA, doPico GA, Reed CE (1978) "Bronchodilating effect of oral theophylline-ephedrine combination." J Allergy Clin Immunol, 62, p. 15-21
  3. Tinkelman DG, Avner SE (1977) "Ephedrine therapy in asthmatic children. Clinical tolerance and absence of side effects." JAMA, 237, p. 553-7
  4. Weinberger MM, Brousky EA (1974) "Evaluation of oral bronchodilator therapy in asthmatic children: bronchodilators in asthmatic children." J Pediatr, 84, p. 421-7
  5. Badiei B, Faciane J, Sly M (1975) "Effect of throphylline, ephedrine and theri combination upon exercise-induced airway obstruction." Ann Allergy, 35, p. 32-6
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Major

PHENobarbital food

Applies to: Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
  3. Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
  4. Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
  5. Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
View all 5 references

Switch to consumer interaction data

Moderate

amitriptyline food

Applies to: amitriptyline / perphenazine

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References

  1. Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
  2. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
View all 7 references

Switch to consumer interaction data

Moderate

perphenazine food

Applies to: amitriptyline / perphenazine

GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.

MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.

References

  1. Lutz EG (1976) "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA, 236, p. 2422-3
  2. Freed E (1981) "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust, 2, p. 44-5

Switch to consumer interaction data

Moderate

ePHEDrine food

Applies to: Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Moderate

aminophylline food

Applies to: Mudrane GG (aminophylline / ephedrine / guaifenesin / phenobarbital)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.