Drug Interactions between amitriptyline / perphenazine and metaraminol
This report displays the potential drug interactions for the following 2 drugs:
- amitriptyline/perphenazine
- metaraminol
Interactions between your drugs
amitriptyline metaraminol
Applies to: amitriptyline / perphenazine and metaraminol
GENERALLY AVOID: Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents and vasoconstrictor-containing local anesthetics. Several-fold increases in the effects of norepinephrine and, to a lesser extent, epinephrine and phenylephrine were reported in healthy subjects pretreated with desipramine, imipramine, or nortriptyline. The mechanism is TCA inhibition of norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, hypertension, throbbing headache, tremor, palpitation, chest pain, and cardiac dysrhythmia have been reported in association with this interaction. Various TCAs have been implicated including amitriptyline, desipramine, imipramine, nortriptyline, and protriptyline. It is not known whether the interaction also occurs with mixed-acting sympathomimetic agents (e.g., dopamine, ephedrine, metaraminol).
MANAGEMENT: Parenteral administration of direct-acting sympathomimetic agents should preferably be avoided during therapy with tricyclic antidepressants except in cases of emergency (e.g., treatment of anaphylaxis). If concomitant use is necessary, initial dose and rate of administration of the sympathomimetic should be reduced, and cardiovascular status including blood pressure should be monitored closely. Although clinical data are lacking, it may be prudent to follow the same precaution with mixed-acting sympathomimetic agents.
References (11)
- Mitchell JR, Cavanaugh JH, Arias L, Oates JA (1970) "Guanethidine and related agents. III: antagonism by drugs which inhibit the norepinephrine pump in man." J Clin Invest, 49, p. 1596-604
- Svedmyr N (1968) "The influence of a tricyclic antidepressive agent (protriptyline) on some of the circulatory effects of noradrenaline and adrenaline in man." Life Sci, 7, p. 77-84
- Boakes AJ, Laurence DR, Teoh PC, Barar FS, Benedikter LT, Pritchard BN (1973) "Interactions between sympathomimetic amines and antidepressant agents in man." Br Med J, 1, p. 311-5
- Borg KO, Johnsson G, Jordo L, Lundborg P, Ronn O, Welin-Fogelberg I (1979) "Interaction studies between three antidepressant drugs (zimelidine, imipramine and chlorimipramine) and noradrenaline in healthy volunteers and some pharmacokinetics of the drugs studied." Acta Pharmacol Toxicol (Copenh), 45, p. 198-205
- Linnoila M, Karoum F, Calil HM, Kopin IJ, Potter WZ (1982) "Alteration of norepinephrine metabolism with desipramine and zimelidine in depressed patients." Arch Gen Psychiatry, 39, p. 1025-8
- ed., Boakes AJ. Vasoconstrictors in local anaesthetics and tricyclic antidepressants. In: Grahame-Smith, DG (1977) "Drug Interactions. QV 38 D7932 1975." Baltimore, MD: University Park Press, p. 275-83
- Fritz H, Hagstam KE, Lindqvist B (1965) "Local skin necrosis after intravenous infusion of norepinephrine, and the concept of endotoxinaemia. A clinical study on 10 cases." Acta Med Scand, 178, p. 403-16
- Teba L, Schiebel F, Dedhia HV, Lazzell VA (1988) "Beneficial effect of norepinephrine in the treatment of circulatory shock caused by tricyclic antidepressant overdose." Am J Emerg Med, 6, p. 566-8
- Goulet JP, Perusse R, Turcotte JY (1992) "Contraindications to vasoconstrictors in dentistry: Part III. Pharmacologic interactions." Oral Surg Oral Med Oral Pathol, 74, p. 692-7
- Niemegeers CJ, Lenaerts FM, Artois KS, Janssen PA (1977) "Interaction of drugs with apomorphine, tryptamine and norepinephrine. A new 'in vivo' approach: the ATN-test in rats." Arch Int Pharmacodyn Ther, 227, p. 238-53
- Ghose K (1980) "Sympathomimetic amines and tricyclic antidepressant drugs." Neuropharmacology, 19, p. 1251-4
amitriptyline perphenazine
Applies to: amitriptyline / perphenazine and amitriptyline / perphenazine
MONITOR: Coadministration of a phenothiazine with a tricyclic antidepressant (TCA) may result in elevated plasma concentrations of one or both drugs as well as additive adverse effects. Most phenothiazines and TCAs have been found to undergo metabolism by CYP450 2D6, thus competitive inhibition of the enzyme may occur when more than one of these agents are administered. Although these drugs have been used together clinically, the possibility of increased risk of serious adverse effects such as central nervous system depression, tardive dyskinesia, hypotension, and prolongation of the QT interval should be considered, as many of these agents alone can and have produced these effects. In addition, excessive anticholinergic effects may occur in combination use, which can result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of anticholinergic intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures.
MANAGEMENT: Concurrent use of phenothiazines and TCAs should be approached with caution, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication (e.g., abdominal pain, fever, heat intolerance, blurred vision, confusion, hallucinations) or cardiovascular toxicity (e.g., dizziness, palpitations, arrhythmias, syncope). Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A dosage reduction in one or both drugs may be necessary if excessive adverse effects develop.
References (16)
- Loga S, Curry S, Lader M (1981) "Interaction of chlorpromazine and nortriptyline in patients with schizophrenia." Clin Pharmacokinet, 6, p. 454-62
- Stadnyk AN, Glezos JD (1983) "Drug-induced heat stroke." Can Med Assoc J, 128, p. 957-9
- Bock JL, Nelson JC, Gray S, Jatlow PI (1983) "Desipramine hydroxylation: variability and effect of antipsychotic drugs." Clin Pharmacol Ther, 33, p. 322-8
- Gram LF, Overo KF (1972) "Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man." Br Med J, 1, p. 463-5
- El-Yousef MK, Manier DH (1974) "Tricyclic antidepressants and phenothiazines." JAMA, 229, p. 1419
- Hirschowitz J, Bennett JA, Zemlan FP, Garver DL (1983) "Thioridazine effect on desipramine plasma levels." J Clin Psychopharmacol, 3, p. 376-9
- Vandel S, Sandoz M, Vandel B, Bonin B, Allers G, Volmat R (1986) "Biotransformation of amitriptyline in man: interaction with phenothiazines." Neuropsychobiology, 15, p. 15-9
- Zelman S, Guillan R (1970) "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry, 126, p. 1787-90
- Mann SC, Boger WP (1978) "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry, 135, p. 1097-100
- Warnes H, Lehmann HE, Ban TA (1967) "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J, 96, p. 1112-3
- Siris SG, Cooper TB, Rifkin AE, Brenner R, Lieberman JA (1982) "Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate." Am J Psychiatry, 139, p. 104-6
- Johnson AL, Hollister LE, Berger PA (1981) "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry, 42, p. 313-7
- Lee BS (1986) "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry, 47, p. 571
- Moreau A, Jones BD, Banno V (1986) "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry, 31, p. 339-41
- Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA (1983) "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm, 2, p. 174-8
- Maynard GL, Soni P (1996) "Thioridazine interferences with imipramine metabolism and measurement." Ther Drug Monit, 18, p. 729-31
Drug and food interactions
amitriptyline food
Applies to: amitriptyline / perphenazine
GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.
MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.
References (7)
- Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
- Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
- Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
- Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
- Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
perphenazine food
Applies to: amitriptyline / perphenazine
GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.
MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.
References (2)
- Lutz EG (1976) "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA, 236, p. 2422-3
- Freed E (1981) "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust, 2, p. 44-5
metaraminol food
Applies to: metaraminol
MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.
MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.
References (7)
- Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
- Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
- (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
- (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
- (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
- (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
- (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
amitriptyline food
Applies to: amitriptyline / perphenazine
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.