Drug Interactions between amitriptyline / perphenazine and fexinidazole
This report displays the potential drug interactions for the following 2 drugs:
- amitriptyline/perphenazine
- fexinidazole
Interactions between your drugs
amitriptyline fexinidazole
Applies to: amitriptyline / perphenazine and fexinidazole
GENERALLY AVOID: Fexinidazole can cause concentration-dependent prolongation of the QT interval. Coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. Based on the exposure-response relationship, treatment with fexinidazole is predicted to cause an average increase of 19 msec in the Fridericia-corrected QT interval (QTcF) at the recommended dosing regimen. In addition, drugs that are inducers of hepatic CYP450 enzymes, such as apalutamide and enzalutamide, may significantly increase the plasma concentration of fexinidazole's active metabolites, fexinidazole sulfoxide (M1) and fexinidazole sulfone (M2). The observed increase in QTcF appears to be associated with the sulfone (M2) metabolite of fexinidazole; therefore, an increase in the plasma concentration of the sulfone (M2) metabolite may increase the risk of QT prolongation. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: The concurrent use of fexinidazole with other medications that can prolong the QT interval, block cardiac potassium channels, and/or induce bradycardia should generally be avoided. If coadministration is unavoidable, treatment with fexinidazole should not be initiated until the opposing drug is eliminated from the body (allow a washout period of 5 half-lives) or do not initiate treatment with the opposing drug until fexinidazole is eliminated from the body (allow a washout period of 7 days). All QT-prolonging drugs including fexinidazole should be interrupted in patients who develop clinically significant ventricular arrhythmia or a QTcF interval greater than 500 msec confirmed by repeat ECG. Patients should be advised to seek medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitations, irregular heartbeat, shortness of breath, or syncope.
References (1)
- (2021) "Product Information. Fexinidazole (fexinidazole)." sanofi-aventis
perphenazine fexinidazole
Applies to: amitriptyline / perphenazine and fexinidazole
GENERALLY AVOID: Fexinidazole can cause concentration-dependent prolongation of the QT interval. Coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. Based on the exposure-response relationship, treatment with fexinidazole is predicted to cause an average increase of 19 msec in the Fridericia-corrected QT interval (QTcF) at the recommended dosing regimen. In addition, drugs that are inducers of hepatic CYP450 enzymes, such as apalutamide and enzalutamide, may significantly increase the plasma concentration of fexinidazole's active metabolites, fexinidazole sulfoxide (M1) and fexinidazole sulfone (M2). The observed increase in QTcF appears to be associated with the sulfone (M2) metabolite of fexinidazole; therefore, an increase in the plasma concentration of the sulfone (M2) metabolite may increase the risk of QT prolongation. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: The concurrent use of fexinidazole with other medications that can prolong the QT interval, block cardiac potassium channels, and/or induce bradycardia should generally be avoided. If coadministration is unavoidable, treatment with fexinidazole should not be initiated until the opposing drug is eliminated from the body (allow a washout period of 5 half-lives) or do not initiate treatment with the opposing drug until fexinidazole is eliminated from the body (allow a washout period of 7 days). All QT-prolonging drugs including fexinidazole should be interrupted in patients who develop clinically significant ventricular arrhythmia or a QTcF interval greater than 500 msec confirmed by repeat ECG. Patients should be advised to seek medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitations, irregular heartbeat, shortness of breath, or syncope.
References (1)
- (2021) "Product Information. Fexinidazole (fexinidazole)." sanofi-aventis
amitriptyline perphenazine
Applies to: amitriptyline / perphenazine and amitriptyline / perphenazine
MONITOR: Coadministration of a phenothiazine with a tricyclic antidepressant (TCA) may result in elevated plasma concentrations of one or both drugs as well as additive adverse effects. Most phenothiazines and TCAs have been found to undergo metabolism by CYP450 2D6, thus competitive inhibition of the enzyme may occur when more than one of these agents are administered. Although these drugs have been used together clinically, the possibility of increased risk of serious adverse effects such as central nervous system depression, tardive dyskinesia, hypotension, and prolongation of the QT interval should be considered, as many of these agents alone can and have produced these effects. In addition, excessive anticholinergic effects may occur in combination use, which can result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of anticholinergic intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures.
MANAGEMENT: Concurrent use of phenothiazines and TCAs should be approached with caution, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication (e.g., abdominal pain, fever, heat intolerance, blurred vision, confusion, hallucinations) or cardiovascular toxicity (e.g., dizziness, palpitations, arrhythmias, syncope). Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A dosage reduction in one or both drugs may be necessary if excessive adverse effects develop.
References (16)
- Loga S, Curry S, Lader M (1981) "Interaction of chlorpromazine and nortriptyline in patients with schizophrenia." Clin Pharmacokinet, 6, p. 454-62
- Stadnyk AN, Glezos JD (1983) "Drug-induced heat stroke." Can Med Assoc J, 128, p. 957-9
- Bock JL, Nelson JC, Gray S, Jatlow PI (1983) "Desipramine hydroxylation: variability and effect of antipsychotic drugs." Clin Pharmacol Ther, 33, p. 322-8
- Gram LF, Overo KF (1972) "Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man." Br Med J, 1, p. 463-5
- El-Yousef MK, Manier DH (1974) "Tricyclic antidepressants and phenothiazines." JAMA, 229, p. 1419
- Hirschowitz J, Bennett JA, Zemlan FP, Garver DL (1983) "Thioridazine effect on desipramine plasma levels." J Clin Psychopharmacol, 3, p. 376-9
- Vandel S, Sandoz M, Vandel B, Bonin B, Allers G, Volmat R (1986) "Biotransformation of amitriptyline in man: interaction with phenothiazines." Neuropsychobiology, 15, p. 15-9
- Zelman S, Guillan R (1970) "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry, 126, p. 1787-90
- Mann SC, Boger WP (1978) "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry, 135, p. 1097-100
- Warnes H, Lehmann HE, Ban TA (1967) "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J, 96, p. 1112-3
- Siris SG, Cooper TB, Rifkin AE, Brenner R, Lieberman JA (1982) "Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate." Am J Psychiatry, 139, p. 104-6
- Johnson AL, Hollister LE, Berger PA (1981) "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry, 42, p. 313-7
- Lee BS (1986) "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry, 47, p. 571
- Moreau A, Jones BD, Banno V (1986) "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry, 31, p. 339-41
- Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA (1983) "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm, 2, p. 174-8
- Maynard GL, Soni P (1996) "Thioridazine interferences with imipramine metabolism and measurement." Ther Drug Monit, 18, p. 729-31
Drug and food interactions
fexinidazole food
Applies to: fexinidazole
GENERALLY AVOID: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.
GENERALLY AVOID: The potential exists for pharmacodynamic interactions and/or toxicities between fexinidazole and herbal medicines and supplements. In addition, grapefruit and grapefruit juice may, theoretically, increase the plasma concentrations of fexinidazole and the risk of adverse effects. The mechanism is decreased clearance of fexinidazole due to inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.
ADJUST DOSING INTERVAL: Food significantly increases the oral absorption and bioavailability of fexinidazole. Compared with the fasted state, the systemic exposure (AUC) of fexinidazole and its metabolites (fexinidazole sulfoxide [M1], fexinidazole sulfone [M2]) were 4- to 5-fold higher following administration with food.
MANAGEMENT: To ensure maximal oral absorption, fexinidazole should be administered with food each day at about the same time of day (e.g., during or immediately after the main meal of the day). Coadministration of fexinidazole with grapefruit, grapefruit juice, or herbal medicines or supplements should be avoided. Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction and instructed to avoid alcoholic beverages and products containing alcohol or propylene glycol while using oral, intravenous, or vaginal preparations of a nitroimidazole. Alcoholic beverages should not be consumed for at least 48 hours after completion of fexinidazole therapy.
References (10)
- Giannini AJ, DeFrance DT (1983) "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol, 20, p. 509-15
- Alexander I (1985) "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract, 39, p. 292-3
- Harries DP, Teale KF, Sunderland G (1990) "Metronidazole and alcohol: potential problems." Scott Med J, 35, p. 179-80
- Edwards DL, Fink PC, Van Dyke PO (1986) "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm, 5, p. 999-1000
- (2002) "Product Information. Flagyl (metronidazole)." Searle
- Williams CS, Woodcock KR (2000) "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother, 34, p. 255-7
- Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP (2002) "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother, 36, p. 971-4
- Krulewitch CJ (2003) "An unexpected adverse drug effect." J Midwifery Womens Health, 48, p. 67-8
- (2004) "Product Information. Tindamax (tinidazole)." Presutti Laboratories Inc
- (2021) "Product Information. Fexinidazole (fexinidazole)." sanofi-aventis
amitriptyline food
Applies to: amitriptyline / perphenazine
GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.
MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.
References (7)
- Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
- Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
- Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
- Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
- Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
perphenazine food
Applies to: amitriptyline / perphenazine
GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.
MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.
References (2)
- Lutz EG (1976) "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA, 236, p. 2422-3
- Freed E (1981) "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust, 2, p. 44-5
amitriptyline food
Applies to: amitriptyline / perphenazine
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.