Skip to main content

Drug Interactions between amitriptyline / perphenazine and esketamine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

amitriptyline esketamine

Applies to: amitriptyline / perphenazine and esketamine

MONITOR CLOSELY: Concomitant use of esketamine with central nervous system (CNS) depressants may increase sedation and impairment of attention, judgment, thinking, reaction speed, and psychomotor skills. In clinical trials, 49% to 61% of esketamine-treated patients developed sedation based on the Modified Observer's Alertness/Sedation scale (MOAA/s), and 0.3% of esketamine-treated patients experienced loss of consciousness (MOAA/s score of 0). In the MOAA/s scale, 5 means "responds readily to name spoken in normal tone" and 0 means "no response after painful trapezius squeeze," and any decrease in MOAA/s from pre-dosing of esketamine is considered to indicate presence of sedation. Dose-related increases in the incidence of sedation were also observed in a fixed-dose study. Additionally, cognitive performance decline was reported in a study in healthy volunteers who received a single intranasal dose of esketamine. Compared to placebo-treated subjects, esketamine-treated subjects required a greater effort to complete cognitive tests at 40 minutes post-dose, although results were comparable between the two groups at 2 hours post-dose. Drowsiness was comparable after 4 hours post-dose.

MANAGEMENT: Caution is advised and patients should be closely monitored during concomitant use of esketamine with CNS depressants or other drugs that can cause sedation or dizziness. Due to the risk of delayed or prolonged sedation and other adverse effects, patients should be monitored for at least 2 hours after esketamine administration, followed by an assessment to determine when the patient is considered clinically stable and ready to leave the healthcare setting. Patients should be instructed not to engage in potentially hazardous activities that require complete mental alertness and motor coordination, such as driving a motor vehicle or operating machinery, until the next day after a restful sleep.

References (4)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. Cerner Multum, Inc. (2015) "Canadian Product Information."
  4. (2019) "Product Information. Spravato (esketamine)." Janssen Pharmaceuticals
Major

perphenazine esketamine

Applies to: amitriptyline / perphenazine and esketamine

MONITOR CLOSELY: Concomitant use of esketamine with central nervous system (CNS) depressants may increase sedation and impairment of attention, judgment, thinking, reaction speed, and psychomotor skills. In clinical trials, 49% to 61% of esketamine-treated patients developed sedation based on the Modified Observer's Alertness/Sedation scale (MOAA/s), and 0.3% of esketamine-treated patients experienced loss of consciousness (MOAA/s score of 0). In the MOAA/s scale, 5 means "responds readily to name spoken in normal tone" and 0 means "no response after painful trapezius squeeze," and any decrease in MOAA/s from pre-dosing of esketamine is considered to indicate presence of sedation. Dose-related increases in the incidence of sedation were also observed in a fixed-dose study. Additionally, cognitive performance decline was reported in a study in healthy volunteers who received a single intranasal dose of esketamine. Compared to placebo-treated subjects, esketamine-treated subjects required a greater effort to complete cognitive tests at 40 minutes post-dose, although results were comparable between the two groups at 2 hours post-dose. Drowsiness was comparable after 4 hours post-dose.

MANAGEMENT: Caution is advised and patients should be closely monitored during concomitant use of esketamine with CNS depressants or other drugs that can cause sedation or dizziness. Due to the risk of delayed or prolonged sedation and other adverse effects, patients should be monitored for at least 2 hours after esketamine administration, followed by an assessment to determine when the patient is considered clinically stable and ready to leave the healthcare setting. Patients should be instructed not to engage in potentially hazardous activities that require complete mental alertness and motor coordination, such as driving a motor vehicle or operating machinery, until the next day after a restful sleep.

References (4)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. Cerner Multum, Inc. (2015) "Canadian Product Information."
  4. (2019) "Product Information. Spravato (esketamine)." Janssen Pharmaceuticals
Moderate

amitriptyline perphenazine

Applies to: amitriptyline / perphenazine and amitriptyline / perphenazine

MONITOR: Coadministration of a phenothiazine with a tricyclic antidepressant (TCA) may result in elevated plasma concentrations of one or both drugs as well as additive adverse effects. Most phenothiazines and TCAs have been found to undergo metabolism by CYP450 2D6, thus competitive inhibition of the enzyme may occur when more than one of these agents are administered. Although these drugs have been used together clinically, the possibility of increased risk of serious adverse effects such as central nervous system depression, tardive dyskinesia, hypotension, and prolongation of the QT interval should be considered, as many of these agents alone can and have produced these effects. In addition, excessive anticholinergic effects may occur in combination use, which can result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of anticholinergic intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures.

MANAGEMENT: Concurrent use of phenothiazines and TCAs should be approached with caution, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication (e.g., abdominal pain, fever, heat intolerance, blurred vision, confusion, hallucinations) or cardiovascular toxicity (e.g., dizziness, palpitations, arrhythmias, syncope). Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A dosage reduction in one or both drugs may be necessary if excessive adverse effects develop.

References (16)
  1. Loga S, Curry S, Lader M (1981) "Interaction of chlorpromazine and nortriptyline in patients with schizophrenia." Clin Pharmacokinet, 6, p. 454-62
  2. Stadnyk AN, Glezos JD (1983) "Drug-induced heat stroke." Can Med Assoc J, 128, p. 957-9
  3. Bock JL, Nelson JC, Gray S, Jatlow PI (1983) "Desipramine hydroxylation: variability and effect of antipsychotic drugs." Clin Pharmacol Ther, 33, p. 322-8
  4. Gram LF, Overo KF (1972) "Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man." Br Med J, 1, p. 463-5
  5. El-Yousef MK, Manier DH (1974) "Tricyclic antidepressants and phenothiazines." JAMA, 229, p. 1419
  6. Hirschowitz J, Bennett JA, Zemlan FP, Garver DL (1983) "Thioridazine effect on desipramine plasma levels." J Clin Psychopharmacol, 3, p. 376-9
  7. Vandel S, Sandoz M, Vandel B, Bonin B, Allers G, Volmat R (1986) "Biotransformation of amitriptyline in man: interaction with phenothiazines." Neuropsychobiology, 15, p. 15-9
  8. Zelman S, Guillan R (1970) "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry, 126, p. 1787-90
  9. Mann SC, Boger WP (1978) "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry, 135, p. 1097-100
  10. Warnes H, Lehmann HE, Ban TA (1967) "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J, 96, p. 1112-3
  11. Siris SG, Cooper TB, Rifkin AE, Brenner R, Lieberman JA (1982) "Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate." Am J Psychiatry, 139, p. 104-6
  12. Johnson AL, Hollister LE, Berger PA (1981) "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry, 42, p. 313-7
  13. Lee BS (1986) "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry, 47, p. 571
  14. Moreau A, Jones BD, Banno V (1986) "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry, 31, p. 339-41
  15. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA (1983) "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm, 2, p. 174-8
  16. Maynard GL, Soni P (1996) "Thioridazine interferences with imipramine metabolism and measurement." Ther Drug Monit, 18, p. 729-31

Drug and food interactions

Moderate

esketamine food

Applies to: esketamine

GENERALLY AVOID: Concomitant use of esketamine with central nervous system (CNS) depressants such as alcohol may increase sedation and impairment of attention, judgment, thinking, reaction speed, and psychomotor skills.

ADJUST DOSING INTERVAL: Nausea and vomiting may occur following intranasal administration of esketamine. In clinical studies, nausea and vomiting were reported in approximately 25% and 10% of esketamine-treated patients, respectively.

MANAGEMENT: Patients receiving esketamine should be advised to avoid or limit the consumption of alcohol. In addition, to help prevent nausea and vomiting, patients should be advised not to eat for at least 2 hours before intranasal administration of esketamine and not to drink liquids for at least 30 minutes prior to administration.

References (2)
  1. Cerner Multum, Inc. "Australian Product Information."
  2. (2019) "Product Information. Spravato (esketamine)." Janssen Pharmaceuticals
Moderate

amitriptyline food

Applies to: amitriptyline / perphenazine

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References (7)
  1. Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
  2. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
Moderate

perphenazine food

Applies to: amitriptyline / perphenazine

GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.

MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.

References (2)
  1. Lutz EG (1976) "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA, 236, p. 2422-3
  2. Freed E (1981) "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust, 2, p. 44-5
Moderate

amitriptyline food

Applies to: amitriptyline / perphenazine

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.