Drug Interactions between amiodarone and teriflunomide
This report displays the potential drug interactions for the following 2 drugs:
- amiodarone
- teriflunomide
Interactions between your drugs
amiodarone teriflunomide
Applies to: amiodarone and teriflunomide
MONITOR CLOSELY: The recent, concomitant, or subsequent use (without the recommended leflunomide washout period or procedure) of other agents known to induce hepatotoxicity may potentiate the risk of liver injury associated with leflunomide. The risk is thought to extend to teriflunomide, its principal active metabolite, because recommended dosages of both result in a similar range of plasma concentrations of teriflunomide. Elevated liver transaminases, hepatitis, jaundice/cholestasis, hepatic failure, and acute hepatic necrosis have been reported with the use of leflunomide. Liver enzyme elevations were generally mild (2 times the upper limit of normal or less) and resolved while continuing treatment. Marked elevations (greater than 3-fold ULN) occurred infrequently and reversed with dose reduction or discontinuation of treatment in most cases. However, fatalities associated with severe liver injury have also been reported rarely. A 2009 review of leflunomide adverse event reports by the FDA identified 49 cases of severe liver injury, including 14 cases of fatal liver failure, between August 2002 and May 2009. An additional five patients required a liver transplant and nine patients experienced a life-threatening event. In this review, concomitant use of other hepatotoxic drugs and preexisting liver disease were associated with the greatest risk for liver injury during leflunomide treatment. Specifically, 46 of the 49 patients were also taking other medications that have been associated with liver injury including methotrexate, TNF-alfa blockers, hydroxychloroquine, acetaminophen, nonsteroidal anti-inflammatory drugs and statins, and 14 patients had preexisting liver disease such as active or chronic hepatitis and/or a history of alcohol abuse. The estimated duration of leflunomide exposure before onset of severe liver injury ranged from 9 days to 6 years, with the majority occurring within the first 6 to 12 months of treatment.
MANAGEMENT: Caution is advised if leflunomide or teriflunomide must be used in patients who are currently receiving or have recently received treatment with other hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice), and vice versa. Liver enzymes and bilirubin should be measured prior to initiation of leflunomide/teriflunomide therapy and at least monthly for the first six months of treatment and every 6 to 8 weeks thereafter. Patients with preexisting liver disease or elevated baseline liver enzymes (i.e., ALT greater than two times ULN) should not receive leflunomide or teriflunomide. Patients who develop elevated serum ALT greater than three times ULN while receiving these medications should discontinue treatment and be given washout procedures with cholestyramine or activated charcoal to accelerate elimination of leflunomide's active metabolite from plasma, which otherwise may take up to two years. Follow-up monitoring should be conducted at least weekly until the ALT value is within normal range, and washout procedures repeated as necessary. All patients treated with leflunomide or teriflunomide should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, malaise, right upper quadrant pain, dark urine, pale stools, and jaundice.
References (3)
- (2001) "Product Information. Arava (leflunomide)." Hoechst Marion Roussel
- EMEA (2001) EMEA public statement on leflunomide (ARAVA) - severe and serious hepatic reactions. Available from URL: http://www.eudra.org/emea.html
- Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
Drug and food interactions
amiodarone food
Applies to: amiodarone
GENERALLY AVOID: Grapefruit juice may significantly increase the plasma concentrations of orally administered amiodarone. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In 11 nonsmoking, healthy volunteers, grapefruit juice (300 mL with drug administration, then 3 hours and 9 hours later) increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of amiodarone (17 mg/kg single dose) by 84% and 50%, respectively, compared to water. Formation of the pharmacologically active metabolite, N-desethylamiodarone (N-DEA), was completely inhibited. Clinically, this interaction can lead to altered efficacy of amiodarone, since antiarrhythmic properties of amiodarone and N-DEA appear to differ. In the study, mean increases in PR and QTc intervals of 17.9% and 11.3%, respectively, were observed 6 hours postdose with water, while increases of 10.2% and 3.3%, respectively, were observed after administration with grapefruit juice.
ADJUST DOSING INTERVAL: Food increases the rate and extent of absorption of amiodarone. The mechanism appears to involve the effect of food-induced physiologic changes on drug release from its formulation. In 30 healthy volunteers, administration of a single 600 mg dose of amiodarone following a high-fat meal resulted in a Cmax and AUC that were 3.8 and 2.4 times the respective values under fasting conditions. The time to reach peak plasma concentration (Tmax) was decreased by 37%, indicating an increased rate of absorption. Mean Cmax and AUC for the active metabolite, N-DEA, also increased by 32% and 55%, respectively, but there was no change in the Tmax.
MANAGEMENT: Patients treated with oral amiodarone should avoid consumption of grapefruits and grapefruit juice. In addition, oral amiodarone should be administered consistently with regard to meals.
References (3)
- (2002) "Product Information. Cordarone (amiodarone)." Wyeth-Ayerst Laboratories
- Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
- Meng X, Mojaverian P, Doedee M, Lin E, Weinryb I, Chiang ST, Kowey PR (2001) "Bioavailability of Amiodarone tablets administered with and without food in healthy subjects." Am J Cardiol, 87, p. 432-5
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.