Drug Interactions between amiodarone and MKO Melt Dose Pack
This report displays the potential drug interactions for the following 2 drugs:
- amiodarone
- MKO Melt Dose Pack (ketamine/midazolam/ondansetron)
Interactions between your drugs
amiodarone ondansetron
Applies to: amiodarone and MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
GENERALLY AVOID: Class IA (e.g., disopyramide, quinidine, procainamide) and class III (e.g., amiodarone, dofetilide, sotalol) antiarrhythmic agents can cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: Coadministration of class IA or class III antiarrhythmic agents with other drugs that can prolong the QT interval should preferably be avoided unless benefits are anticipated to outweigh the risks. Caution and clinical monitoring are recommended if concomitant use is required. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.
References (13)
- (2002) "Product Information. Cordarone (amiodarone)." Wyeth-Ayerst Laboratories
- (2002) "Product Information. Vascor (bepridil)." McNeil Pharmaceutical
- (2001) "Product Information. Procan SR (procainamide)." Parke-Davis
- "Product Information. Quiniglute (quinidine)." Berlex, Richmond, CA.
- (2001) "Product Information. Betapace (sotalol)." Berlex Laboratories
- (2001) "Product Information. Norpace (disopyramide)." Searle
- Trujillo TC, Nolan PE (2000) "Antiarrhythmic agents - Drug interactions of clinical significance." Drug Safety, 23, p. 509-32
- Yamreudeewong W, DeBisschop M, Martin L, Lower D (2003) "Potentially Significant Drug Interactions of Class III Antiarrhythmic Drugs." Drug Saf, 26, p. 421-38
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
- Cerner Multum, Inc. "Australian Product Information."
- EMA. European Medicines Agency. European Union (2013) EMA - List of medicines under additional monitoring. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000366.jsp&mid=WC0b01ac058067c852
- Maxa JL, Hebeler RF, Adeeko MA (2006) "Torsades de pointes following concurrent amiodarone and levofloxacin therapy." Proc (Bayl Univ Med Cent), 19, p. 345-6
ketamine midazolam
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron) and MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.
MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (3)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
amiodarone ketamine
Applies to: amiodarone and MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
MONITOR: Amiodarone may increase the effect of general anesthetics due to its adrenergic blocking effects. Data have been conflicting; however, the potential for increased risk of intraoperative complications such as arrhythmia, heart block, or pacemaker dependency should be considered.
MANAGEMENT: Cardiorespiratory status should be closely monitored during surgery and until the effects of anesthesia have worn off.
References (3)
- Kerin NZ, Aragon E, Faitel K, Frumin H, Rubenfire M (1989) "Long-term efficacy and toxicity of high- and low-dose amiodarone regimens." J Clin Pharmacol, 29, p. 418-23
- Gallagher JD, Lieberman RW, Meranze J, Spielman SR, Ellison N (1981) "Amiodarone-induced complications during coronary artery surgery." Anesthesiology, 55, p. 186-8
- Liberman BA, Teasdale SJ (1985) "Anaesthesia and amiodarone." Can Anaesth Soc J, 32, p. 629-38
amiodarone midazolam
Applies to: amiodarone and MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
Amiodarone may increase the pharmacologic effect of benzodiazepines by its adrenergic blocking effects. Data are available for diazepam. Management consists of monitoring the patient's mental status during coadministration.
References (6)
- Kerin NZ, Aragon E, Faitel K, Frumin H, Rubenfire M (1989) "Long-term efficacy and toxicity of high- and low-dose amiodarone regimens." J Clin Pharmacol, 29, p. 418-23
- Nolan PE, Marcus FI, Karol MD, Hoyer GL, Gear K (1990) "Effect of phenytoin on the clinical pharmacokinetics of amiodarone." J Clin Pharmacol, 30, p. 1112-9
- Wilson JS, Podrid PJ (1991) "Side effects from amiodarone." Am Heart J, 121, p. 158-71
- (2002) "Product Information. Xanax (alprazolam)." Pharmacia and Upjohn
- (2005) "Product Information. Niravam (alprazolam)." Schwarz Pharma
- (2005) "Product Information. Xanax XR (alprazolam)." Pfizer U.S. Pharmaceuticals Group
Drug and food interactions
amiodarone food
Applies to: amiodarone
GENERALLY AVOID: Grapefruit juice may significantly increase the plasma concentrations of orally administered amiodarone. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In 11 nonsmoking, healthy volunteers, grapefruit juice (300 mL with drug administration, then 3 hours and 9 hours later) increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of amiodarone (17 mg/kg single dose) by 84% and 50%, respectively, compared to water. Formation of the pharmacologically active metabolite, N-desethylamiodarone (N-DEA), was completely inhibited. Clinically, this interaction can lead to altered efficacy of amiodarone, since antiarrhythmic properties of amiodarone and N-DEA appear to differ. In the study, mean increases in PR and QTc intervals of 17.9% and 11.3%, respectively, were observed 6 hours postdose with water, while increases of 10.2% and 3.3%, respectively, were observed after administration with grapefruit juice.
ADJUST DOSING INTERVAL: Food increases the rate and extent of absorption of amiodarone. The mechanism appears to involve the effect of food-induced physiologic changes on drug release from its formulation. In 30 healthy volunteers, administration of a single 600 mg dose of amiodarone following a high-fat meal resulted in a Cmax and AUC that were 3.8 and 2.4 times the respective values under fasting conditions. The time to reach peak plasma concentration (Tmax) was decreased by 37%, indicating an increased rate of absorption. Mean Cmax and AUC for the active metabolite, N-DEA, also increased by 32% and 55%, respectively, but there was no change in the Tmax.
MANAGEMENT: Patients treated with oral amiodarone should avoid consumption of grapefruits and grapefruit juice. In addition, oral amiodarone should be administered consistently with regard to meals.
References (3)
- (2002) "Product Information. Cordarone (amiodarone)." Wyeth-Ayerst Laboratories
- Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
- Meng X, Mojaverian P, Doedee M, Lin E, Weinryb I, Chiang ST, Kowey PR (2001) "Bioavailability of Amiodarone tablets administered with and without food in healthy subjects." Am J Cardiol, 87, p. 432-5
ketamine food
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.
MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (3)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
ketamine food
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of ketamine. Use in combination may result in additive central nervous system (CNS) depression and/or impairment of judgment, thinking, and psychomotor skills.
GENERALLY AVOID: Coadministration of oral ketamine with grapefruit juice may significantly increase the plasma concentrations of S(+) ketamine, the dextrorotatory enantiomer of ketamine. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. When a single 0.2 mg/kg dose of S(+) ketamine was administered orally on study day 5 with grapefruit juice (200 mL three times daily for 5 days) in 12 healthy volunteers, mean S(+) ketamine peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 2.1- and 3.0-fold, respectively, compared to administration with water. In addition, the elimination half-life of S(+) ketamine increased by 24% with grapefruit juice, and the ratio of the main metabolite norketamine to ketamine was decreased by 57%. The pharmacodynamics of ketamine were also altered by grapefruit juice. Specifically, self-rated relaxation was decreased and performance in the digit symbol substitution test was increased with grapefruit juice, but other behavioral or analgesic effects were not affected.
MANAGEMENT: Patients receiving ketamine should not drink alcohol. Caution is advised when ketamine is used in patients with acute alcohol intoxication or a history of chronic alcoholism. Following anesthesia with ketamine, patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination, such as driving or operating hazardous machinery, for at least 24 hours and until they know how the medication affects them. Patients treated with oral ketamine should also avoid consumption of grapefruit and grapefruit juice during treatment. Otherwise, dosage reductions of oral ketamine should be considered.
References (4)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
- Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2012) "S-ketamine concentrations are greatly increased by grapefruit juice." Eur J Clin Pharmacol, 68, p. 979-86
midazolam food
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
GENERALLY AVOID: The pharmacologic activity of oral midazolam, triazolam, and alprazolam may be increased if taken after drinking grapefruit juice. The proposed mechanism is CYP450 3A4 enzyme inhibition. In addition, acute alcohol ingestion may potentiate CNS depression and other CNS effects of many benzodiazepines. Tolerance may develop with chronic ethanol use. The mechanism may be decreased clearance of the benzodiazepines because of CYP450 hepatic enzyme inhibition. Also, it has been suggested that the cognitive deficits induced by benzodiazepines may be increased in patients who chronically consume large amounts of alcohol.
MANAGEMENT: The manufacturer recommends that grapefruit juice should not be taken with oral midazolam. Patients taking triazolam or alprazolam should be monitored for excessive sedation. Alternatively, the patient could consume orange juice which does not interact with these drugs. Patients should be advised to avoid alcohol during benzodiazepine therapy.
References (7)
- (2002) "Product Information. Xanax (alprazolam)." Pharmacia and Upjohn
- (2002) "Product Information. Valium (diazepam)." Roche Laboratories
- (2001) "Product Information. Halcion (triazolam)." Pharmacia and Upjohn
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Kupferschmidt HHT, Ha HR, Ziegler WH, Meier PJ, Krahenbuhl S (1995) "Interaction between grapefruit juice and midazolam in humans." Clin Pharmacol Ther, 58, p. 20-8
- Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.