Skip to main content

Drug Interactions between aliskiren / valsartan and Matulane

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

valsartan aliskiren

Applies to: aliskiren / valsartan and aliskiren / valsartan

CONTRAINDICATED: In patients with type 2 diabetes and renal impairment, coadministration of aliskiren with ACE inhibitors or angiotensin receptor blockers (ARBs) has been associated with an increased risk of adverse events including renal complications, hyperkalemia, and hypotension. Interim review of data from the ALTITUDE study after 18 to 24 months revealed no additional benefit and a higher incidence of adverse events when aliskiren 300 mg daily, as opposed to placebo, was added to optimal cardiovascular treatment including an ACE inhibitor or ARB. Another preliminary finding was a slight excess of death or stroke in the aliskiren group; however, the relationship to aliskiren treatment has not been established. ALTITUDE was a multinational study in 8,606 patients from 36 countries evaluating the potential benefits of aliskiren to reduce the risk of cardiovascular and renal events in patients with type 2 diabetes and renal impairment, who are known to be at high risk of cardiovascular and renal events. The trial was halted in December 2011 per recommendation of the independent data monitoring committee overseeing the study.

GENERALLY AVOID: In patients without diabetes, coadministration of aliskiren with ACE inhibitors or ARBs may also be associated with increased risk of symptomatic hypotension, hyperkalemia, and changes in renal function including acute renal failure. All drugs inhibiting the renin-angiotensin system (RAS) can have these effects, which may be additive during concomitant administration. The risk of symptomatic hypotension is increased in the presence of marked volume and/or salt depletion. Elevations in serum potassium levels to greater than 5.5 mEq/L were infrequent with aliskiren alone (0.9% compared to 0.6% with placebo), but increased to 5.5% when used in combination with an ACE inhibitor in a diabetic population. Patients whose renal function may depend in part on the activity of the RAS, including those with renal artery stenosis, severe heart failure, postmyocardial infarction or volume depletion, may be at particular risk for developing acute renal failure with these drugs.

MANAGEMENT: The use of aliskiren with ACE inhibitors or ARBs is considered contraindicated in patients with diabetes and should be avoided in general, particularly in patients with moderate to severe renal impairment (i.e., creatinine clearance (CrCl) < 60 mL/min). Prescribers should not initiate aliskiren in diabetic patients who are taking an ACE inhibitor or an ARB, and should stop any aliskiren-containing treatment if these patients are already receiving the combination. Alternative antihypertensive treatment should be considered as necessary. Most patients do not obtain any additional benefit from combination therapy relative to monotherapy; therefore, the potential risks should be thoroughly assessed when aliskiren is prescribed with ACE inhibitors or ARBs for the treatment of essential hypertension in patients without diabetes. Volume or salt depletion should be corrected prior to initiation of treatment. Routine monitoring of blood pressure, electrolytes, and renal function are recommended, particularly in the elderly or patients with worsening heart failure or a risk for dehydration. Potassium supplementation should generally be avoided unless it is closely monitored, and patients should be advised to seek medical attention if they experience signs and symptoms of hyperkalemia such as weakness, listlessness, confusion, tingling of the extremities, and irregular heartbeat.

References

  1. (2007) "Product Information. Tekturna (aliskiren)." Novartis Pharmaceuticals
  2. Novartis International AG (2012) Novartis announces termination of ALTITUDE study with Rasilez Tekturna in high-risk patients with diabetes and renal impairment. http://cardiobrief.files.wordpress.com/2011/12/novartis-aliskiren-altitude-pr.pdf
  3. Chief Scientific Officer and Senior Vice-President Clinical and Regulatory Affairs, Health Canada, Leclerc JM (2012) Potential risks of cardiovascular and renal adverse events in patients with type 2 diabetes treated with aliskiren (RASILEZ) or aliskiren/hydrochlorothiazide (RASILEZ HCT). http://www.hc-sc.gc.ca/dhp-mps/alt_formats/pdf/medeff/advisories-avis/prof/2012/r
  4. National Kidney Foundation (2012) "KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 update." Am J Kidney Dis, 60, p. 850-86
  5. EMA. European Medicines Agency (2014) PRAC recommends against combined use of medicines affecting the renin-angiotensin (RAS) system: recommendation will now be considered by CHMP for final opinion. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Renin-angiotensin_sys
  6. MHRA. Medicines and Healthcare Regulatory Agency (2014) Combination use of medicines from different classes of renin-angiotensin system blocking agents: risk of hyperkalaemia, hypotension, and impaired renal function--new warnings. http://www.mhra.gov.uk/Safetyinformation/DrugSafetyUpdate/CON426905
View all 6 references

Switch to consumer interaction data

Moderate

procarbazine valsartan

Applies to: Matulane (procarbazine) and aliskiren / valsartan

MONITOR: Monoamine oxidase inhibitors (MAOIs) may potentiate the hypotensive effect of some medications. MAOIs alone quite commonly produce orthostatic hypotension. This effect may stem from a gradual MAOI-induced accumulation of false neurotransmitters in peripheral adrenergic neurons that have minimal activity at alpha- and beta-adrenergic receptors, resulting in a functional block of sympathetic neurotransmission. The interaction has been reported with the concomitant use of beta-blockers. In one report, a young woman developed marked orthostatic hypotension following the addition of pindolol 2.5 mg three times a day to an existing regimen of tranylcypromine. The pindolol dosage was reduced to 2.5 mg twice a day until her blood pressure stabilized, then slowly increased to 5 mg three times a day.

MANAGEMENT: Caution is advised during coadministration of MAOIs and other medications with hypotensive effects, especially during the first few weeks of treatment. Close monitoring for development of hypotension is recommended. Ambulatory patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Reggev A, Vollhardt BR (1992) "Bradycardia induced by an interaction between phenelzine and beta blockers." Psychosomatics, 30, p. 106-8
  2. Pettinger WA, Soyangco FG, Oates JA (1968) "Inhibition of monoamine oxidase in man by furazolidone." Clin Pharmacol Ther, 9, p. 442-7
  3. Schulz R, Antonin KH, Hoffmann E, et al. (1989) "Tyramine kinetics and pressor sensitivity during monoamine oxidase inhibition by selegiline." Clin Pharmacol Ther, 46, p. 528-36
  4. Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
  5. Ban TA (1975) "Drug interactions with psychoactive drugs." Dis Nerv Syst, 36, p. 164-6
  6. (2001) "Product Information. Matulane (procarbazine)." Roche Laboratories
  7. De Vita VT, Hahn MA, Oliverio VT (1965) "Monoamine oxidase inhibition by a new carcinostatic agent, n-isopropyl-a-(2-methylhydrazino)-p-toluamide (MIH). (30590)." Proc Soc Exp Biol Med, 120, p. 561-5
  8. Kronig MH, Roose SP, Walsh BT, Woodring S, Glassman AH (1983) "Blood pressure effects of phenelzine." J Clin Psychopharmacol, 3, p. 307-10
  9. Golwyn DH, Sevlie CP (1993) "Monoamine oxidase inhibitor hypertensive crisis headache and orthostatic hypotension." J Clin Psychopharmacol, 13, p. 77-8
  10. (2001) "Product Information. Nardil (phenelzine)." Parke-Davis
  11. (2001) "Product Information. Parnate (tranylcypromine)." SmithKline Beecham
  12. (2001) "Product Information. Marplan (isocarboxazid)." Roche Laboratories
  13. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
View all 13 references

Switch to consumer interaction data

Moderate

procarbazine aliskiren

Applies to: Matulane (procarbazine) and aliskiren / valsartan

MONITOR: Monoamine oxidase inhibitors (MAOIs) may potentiate the hypotensive effect of some medications. MAOIs alone quite commonly produce orthostatic hypotension. This effect may stem from a gradual MAOI-induced accumulation of false neurotransmitters in peripheral adrenergic neurons that have minimal activity at alpha- and beta-adrenergic receptors, resulting in a functional block of sympathetic neurotransmission. The interaction has been reported with the concomitant use of beta-blockers. In one report, a young woman developed marked orthostatic hypotension following the addition of pindolol 2.5 mg three times a day to an existing regimen of tranylcypromine. The pindolol dosage was reduced to 2.5 mg twice a day until her blood pressure stabilized, then slowly increased to 5 mg three times a day.

MANAGEMENT: Caution is advised during coadministration of MAOIs and other medications with hypotensive effects, especially during the first few weeks of treatment. Close monitoring for development of hypotension is recommended. Ambulatory patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Reggev A, Vollhardt BR (1992) "Bradycardia induced by an interaction between phenelzine and beta blockers." Psychosomatics, 30, p. 106-8
  2. Pettinger WA, Soyangco FG, Oates JA (1968) "Inhibition of monoamine oxidase in man by furazolidone." Clin Pharmacol Ther, 9, p. 442-7
  3. Schulz R, Antonin KH, Hoffmann E, et al. (1989) "Tyramine kinetics and pressor sensitivity during monoamine oxidase inhibition by selegiline." Clin Pharmacol Ther, 46, p. 528-36
  4. Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
  5. Ban TA (1975) "Drug interactions with psychoactive drugs." Dis Nerv Syst, 36, p. 164-6
  6. (2001) "Product Information. Matulane (procarbazine)." Roche Laboratories
  7. De Vita VT, Hahn MA, Oliverio VT (1965) "Monoamine oxidase inhibition by a new carcinostatic agent, n-isopropyl-a-(2-methylhydrazino)-p-toluamide (MIH). (30590)." Proc Soc Exp Biol Med, 120, p. 561-5
  8. Kronig MH, Roose SP, Walsh BT, Woodring S, Glassman AH (1983) "Blood pressure effects of phenelzine." J Clin Psychopharmacol, 3, p. 307-10
  9. Golwyn DH, Sevlie CP (1993) "Monoamine oxidase inhibitor hypertensive crisis headache and orthostatic hypotension." J Clin Psychopharmacol, 13, p. 77-8
  10. (2001) "Product Information. Nardil (phenelzine)." Parke-Davis
  11. (2001) "Product Information. Parnate (tranylcypromine)." SmithKline Beecham
  12. (2001) "Product Information. Marplan (isocarboxazid)." Roche Laboratories
  13. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
View all 13 references

Switch to consumer interaction data

Drug and food interactions

Major

procarbazine food

Applies to: Matulane (procarbazine)

CONTRAINDICATED: Foods that contain large amounts of tyramine may precipitate a hypertensive crisis in patients treated with monoamine oxidase inhibitors (MAOIs). The mechanism is inhibition of MAO-A, the enzyme responsible for metabolizing exogenous amines such as tyramine in the gut and preventing them from being absorbed intact. Once absorbed, tyramine is metabolized to octopamine, a substance that is believed to displace norepinephrine from storage granules.

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of MAOIs. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: In general, patients treated with MAOIs or other agents that possess MAOI activity (e.g., furazolidone, linezolid, procarbazine) should avoid consumption of products that contain large amounts of amines and protein foods in which aging or breakdown of protein is used to increase flavor. These foods include cheese (particularly strong, aged or processed cheeses), sour cream, wine (particularly red wine), champagne, beer, pickled herring, anchovies, caviar, shrimp paste, liver (particularly chicken liver), dry sausage, salamis, figs, raisins, bananas, avocados, chocolate, soy sauce, bean curd, sauerkraut, yogurt, papaya products, meat tenderizers, fava bean pods, protein extracts, yeast extracts, and dietary supplements. Caffeine may also precipitate hypertensive crisis so its intake should be minimized as well. At least 14 days should elapse following discontinuation of MAOI therapy before these foods may be consumed. Specially designed reference materials and dietary consultation are recommended so that an appropriate and safe diet can be planned. Patients should be advised to promptly seek medical attention if they experience potential signs and symptoms of a hypertensive crisis such as severe headache, visual disturbances, difficulty thinking, stupor or coma, seizures, chest pain, unexplained nausea or vomiting, and stroke-like symptoms. Patients should also be counseled not to use MAOIs with alcohol, and to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them.

References

  1. Pettinger WA, Soyangco FG, Oates JA (1968) "Inhibition of monoamine oxidase in man by furazolidone." Clin Pharmacol Ther, 9, p. 442-7
  2. Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
  3. Nuessle WF, Norman FC, Miller HE (1965) "Pickled herring and tranylcypromine reaction." JAMA, 192, p. 142-3
  4. Sweet RA, Liebowitz MR, Holt CS, Heimberg RG (1991) "Potential interactions between monoamine oxidase inhibitors and prescribed dietary supplements." J Clin Psychopharmacol, 11, p. 331-2
  5. Walker JI, Davidson J, Zung WWK (1984) "Patient compliance with MAO Inhibitor therapy." J Clin Psychiatry, 45, p. 78-80
  6. Ban TA (1975) "Drug interactions with psychoactive drugs." Dis Nerv Syst, 36, p. 164-6
  7. Darcy PF, Griffin JP (1995) "Interactions with drugs used in the treatment of depressive illness." Adverse Drug React Toxicol Rev, 14, p. 211-31
  8. Maxwell MB (1980) "Reexamining the dietary restrictions with procarbazine (an MAOI)." Cancer Nurs, 3, p. 451-7
  9. (2001) "Product Information. Matulane (procarbazine)." Roche Laboratories
  10. De Vita VT, Hahn MA, Oliverio VT (1965) "Monoamine oxidase inhibition by a new carcinostatic agent, n-isopropyl-a-(2-methylhydrazino)-p-toluamide (MIH). (30590)." Proc Soc Exp Biol Med, 120, p. 561-5
  11. Zetin M, Plon L, DeAntonio M (1987) "MAOI reaction with powdered protein dietary supplement." J Clin Psychiatry, 48, p. 499
  12. Domino EF, Selden EM (1984) "Red wine and reactions." J Clin Psychopharmacol, 4, p. 173-4
  13. Tailor SA, Shulman KI, Walker SE, Moss J, Gardner D (1994) "Hypertensive episode associated with phenelzine and tap beer--a reanalysis of the role of pressor amines in beer." J Clin Psychopharmacol, 14, p. 5-14
  14. Pohl R, Balon R, Berchou R (1988) "Reaction to chicken nuggets in a patient taking an MAOI." Am J Psychiatry, 145, p. 651
  15. (2001) "Product Information. Furoxone (furazolidone)." Roberts Pharmaceutical Corporation
  16. (2001) "Product Information. Nardil (phenelzine)." Parke-Davis
  17. (2001) "Product Information. Marplan (isocarboxazid)." Roche Laboratories
  18. (2001) "Product Information. Zyvox (linezolid)." Pharmacia and Upjohn
  19. Martin TG (1996) "Serotonin syndrome." Ann Emerg Med, 28, p. 520-6
View all 19 references

Switch to consumer interaction data

Moderate

valsartan food

Applies to: aliskiren / valsartan

GENERALLY AVOID: Moderate-to-high dietary intake of potassium, especially salt substitutes, may increase the risk of hyperkalemia in some patients who are using angiotensin II receptor blockers (ARBs). ARBs can promote hyperkalemia through inhibition of angiotensin II-induced aldosterone secretion. Patients with diabetes, heart failure, dehydration, or renal insufficiency have a greater risk of developing hyperkalemia.

MANAGEMENT: Patients should receive dietary counseling and be advised to not use potassium-containing salt substitutes or over-the-counter potassium supplements without consulting their physician. If salt substitutes are used concurrently, regular monitoring of serum potassium levels is recommended. Patients should also be advised to seek medical attention if they experience symptoms of hyperkalemia such as weakness, irregular heartbeat, confusion, tingling of the extremities, or feelings of heaviness in the legs.

References

  1. (2001) "Product Information. Cozaar (losartan)." Merck & Co., Inc
  2. (2001) "Product Information. Diovan (valsartan)." Novartis Pharmaceuticals

Switch to consumer interaction data

Moderate

aliskiren food

Applies to: aliskiren / valsartan

GENERALLY AVOID: Coadministration with orange, apple, or grapefruit juice may significantly decrease the oral bioavailability and renin-inhibiting effect of aliskiren. The exact mechanism of interaction is unknown, but may include inhibition of OATP2B1-mediated influx of aliskiren in the small intestine, formation of insoluble complexes between fruit juice constituents and aliskiren, and/or increased ionization of aliskiren due to reduced intestinal pH. In 12 healthy volunteers, 200 mL of either orange juice or apple juice administered three times daily for 5 days in combination with a single 150 mg oral dose of aliskiren on day 3 reduced the mean aliskiren peak plasma concentration (Cmax) and systemic exposure (AUC) by approximately 80% and 60%, respectively, compared to water. Plasma renin activity was 87% and 67% higher at 24 hours postdose when aliskiren was administered with orange juice and apple juice, respectively, compared to water. No significant differences were observed in the blood pressure or heart rate between treatments. However, this may be due to the delayed onset of aliskiren's blood pressure-lowering effect, which would not be apparent following a single dose. A similar pharmacokinetic interaction has been reported with grapefruit juice. In 11 healthy volunteers, 200 mL of normal strength grapefruit juice administered three times daily for 5 days in combination with a single 150 mg oral dose of aliskiren on day 3 reduced the mean aliskiren Cmax and AUC by 81% and 61%, respectively, but there was no change in plasma renin activity compared to water. A high degree of interpatient variability was observed with all three interactions.

MONITOR: High-fat meals can substantially reduce the gastrointestinal absorption of aliskiren. According to the product labeling, administration of aliskiren with a high-fat meal decreased the mean peak plasma concentration (Cmax) and systemic exposure (AUC) by 85% and 71%, respectively. In clinical trials, however, aliskiren was administered without a fixed requirement in relation to meals.

MANAGEMENT: To ensure steady systemic drug levels and therapeutic effects, patients should establish a routine pattern for administration of aliskiren with regard to meals. Coadministration with orange, apple, or grapefruit juice should be avoided, especially if these juices are to be consumed on a regular basis or shortly before or after aliskiren dosing.

References

  1. (2007) "Product Information. Tekturna (aliskiren)." Novartis Pharmaceuticals
  2. Vaidyanathan S, Jarugula V, Dieterich HA, Howard D, Dole WP (2008) "Clinical pharmacokinetics and pharmacodynamics of aliskiren." Clin Pharmacokinet, 47, p. 515-31
  3. Tapaninen T, Neuvonen PJ, Niemi M (2010) "Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren." Clin Pharmacol Ther, 88, p. 339-42
  4. Tapaninen T, Neuvonen PJ, Niemi M (2010) "Orange and apple juices greatly reduce the plasma concentrations of the OATP2B1 substrate aliskiren." Br J Clin Pharmacol, 71, p. 718-26
View all 4 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.