Skip to main content

Drug Interactions between albendazole and emtricitabine / lopinavir / ritonavir / tenofovir

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

albendazole ritonavir

Applies to: albendazole and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir may decrease the plasma concentrations of the benzimidazoles, albendazole and mebendazole, as well as the active metabolite of albendazole, albendazole sulfoxide. The precise mechanism has not been established, but may be related to the induction of CYP450 1A2, CYP450 2C9, and/or uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) by ritonavir following chronic administration. A pharmacokinetic study evaluating the effects of a single dose of either albendazole (400 mg) (n=8) or mebendazole (1000 mg) (n=8) administered with ritonavir (200 mg twice daily for 8 days) in healthy, nonsmoking male Caucasian subjects reported a significant reduction in the systemic exposure (AUC) and maximum plasma concentration (Cmax) of both albendazole and mebendazole. Specifically, mean AUC decreased to 27% and 43% of baseline for albendazole and mebendazole, respectively, and Cmax decreased to 26% and 41% of baseline, respectively. Albendazole sulfoxide AUC and Cmax were reduced to 41% and 52% of baseline, respectively. By contrast, pharmacokinetic parameters for albendazole, mebendazole, and albendazole sulfoxide were not significantly altered following administration of ritonavir for 2 doses only. The clinical relevance of the interaction observed following chronic ritonavir administration is unknown, since therapeutic ranges to optimize efficacy have not been established for either albendazole or mebendazole. Clinical impact is expected to be minimal in the treatment of intestinal infections, but may be increased when albendazole or mebendazole is used for systemic helminthic diseases.

MANAGEMENT: Caution and monitoring for altered clinical efficacy are recommended if albendazole or mebendazole is used in combination with ritonavir in patients being treated for systemic helminthic infections. Dose adjustments or alternative treatments may be required if an interaction is suspected.

References

  1. Cerner Multum, Inc. "Australian Product Information."
  2. Corti N, Heck A, Rentsch K, et al. (2009) "Effect of ritonavir on the pharmacokinetics of the benzimidazoles albendazole and mebendazole: an interaction study in healthy volunteers." Eur J Clin Pharmacol, 65, p. 999-1006
  3. Pawluk SA, Roels CA, Wilby KJ, Ensom MHH (2015) "A review of pharmacokinetic drug–drug interactions with the anthelmintic medications albendazole and mebendazole." Clin Pharmacokinet, 54, p. 371-83

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

albendazole food

Applies to: albendazole

ADJUST DOSING INTERVAL: Food enhances the oral bioavailability of albendazole, which is rapidly converted by hepatocytes and intestinal mucosal cells into the active metabolite, albendazole sulfoxide (ABZSX), following absorption. The proposed mechanism is stimulation of gastric acid secretion, as the absorption of albendazole is thought to be pH-dependent. According to the product labeling, plasma concentrations of ABZSX are up to 5-fold higher on average when albendazole is administered with a fatty meal (fat content approximately 40 g) compared to administration in the fasted state. In one study of six healthy male volunteers, administration of a single 10 mg/kg oral dose of albendazole in combination with a high-fat meal (57 g fat, 1399 kcal) increased the mean ABZSX peak plasma concentration (Cmax) and systemic exposure (AUC) by 6.5- and 9.4-fold, respectively, and delayed the time to reach Cmax (Tmax) from 2.5 to 5.3 hours compared to administration in the fasted state with water. The elimination half-life was not affected.

MONITOR: Grapefruit juice may increase the oral bioavailability of albendazole, which is rapidly converted by hepatocytes and intestinal mucosal cells into the active metabolite, albendazole sulfoxide (ABZSX), following absorption. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In six healthy male volunteers, administration of a single 10 mg/kg oral dose of albendazole in combination with 250 mL of double-strength grapefruit juice increased the mean ABZSX peak plasma concentration (Cmax) and systemic exposure (AUC) by 3.2- and 3.1-fold, respectively, compared to administration with water. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: To ensure maximal oral absorption, albendazole should be taken with food. Grapefruit juice may also enhance the oral bioavailability of albendazole.

References

  1. Awadzi K, Hero M, Opoku NO, Buttner DW, Coventry PA, Prime MA, Orme ML, Edwards G (1994) "The chemotherapy of onchocerciasis XVII. A clinical evaluation of albendazole in patients with onchocerciasis; effects of food and pretreatment with ivermectin on drug response and pharmacokinetics." Trop Med Parasitol, 45, p. 203-8
  2. (2001) "Product Information. Albenza (albendazole)." SmithKline Beecham
  3. Nagy J, Schipper HG, Koopmans RP, Butter JJ, van Boxtel CJ, Kager PA (2002) "Effect of grapefruit juice or cimetidine coadministration on albendazole bioavailability." Am J Trop Med Hyg, 66, p. 260-3

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Minor

tenofovir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.