Skip to main content

Drug Interactions between Alagesic LQ and Liptruzet

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

acetaminophen butalbital

Applies to: Alagesic LQ (acetaminophen / butalbital / caffeine) and Alagesic LQ (acetaminophen / butalbital / caffeine)

MONITOR: Barbiturates may increase the hepatotoxic potential of acetaminophen and decrease its therapeutic effects. The mechanism may be related to accelerated CYP450 metabolism of acetaminophen with consequent increase in hepatotoxic metabolites. This interaction is of greatest concern in cases of acetaminophen overdose.

MANAGEMENT: Monitoring for altered efficacy and safety is recommended. Prolonged use or high doses of acetaminophen should be avoided by patients on barbiturate therapy.

References

  1. Pirotte JH "Apparent potentiation by phenobarbital of hepatotoxicity from small doses of acetaminophen." Ann Intern Med 101 (1984): 403
  2. Douidar SM, Ahmed AE "A novel mechanism for the enhancement of acetaminophen hepatotoxicity by phenobarbital." J Pharmacol Exp Ther 240 (1987): 578-83
  3. Wright N, Prescott LF "Potentiation by previous drug therapy of hepatotoxicity following paracetamol overdose." Scott Med J 18 (1973): 56-8
  4. Bock KW, Wiltfang J, Blume R, Ullrich D, Bircher J "Paracetamol as a test drug to determine glucuronide formation in man: effects of inducers and of smoking." Eur J Clin Pharmacol 31 (1987): 677-83
View all 4 references

Switch to consumer interaction data

Moderate

butalbital atorvastatin

Applies to: Alagesic LQ (acetaminophen / butalbital / caffeine) and Liptruzet (atorvastatin / ezetimibe)

MONITOR: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of atorvastatin and its active metabolites, all of which are substrates of the isoenzyme. When atorvastatin (40 mg/day) was coadministered for 28 days with the potent CYP450 3A4 inducer phenytoin (4 mg/kg/day) in healthy volunteers (n=44), atorvastatin peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by an average of 24% and 54%, respectively. The Cmax of two active metabolites, 2-hydroxy- and 4-hydroxyatorvastatin, also decreased by an average of 22% and 52%, respectively, while AUC decreased by an average of 53% and 44%, respectively. Consistent with the observed pharmacokinetic interaction, there have been isolated reports of reduced efficacy of atorvastatin in the presence of phenytoin, followed by improved cholesterol levels after discontinuation of phenytoin. In another study, coadministration of the mixed CYP450 3A4 inducer/inhibitor efavirenz (600 mg once daily for 15 days) with atorvastatin (10 mg daily during the last 4 days of efavirenz) in 14 healthy volunteers resulted in median decreases of 43% in atorvastatin AUC and 34% in total active atorvastatin (parent drug + active metabolites) AUC. However, the median LDL decrease was not significantly different during coadministration with efavirenz compared to atorvastatin administered alone (-29 versus -22, respectively). Atorvastatin did not affect the AUC of efavirenz. In a study of patients with non-small cell lung cancer receiving the CYP450 3A4 inducer bexarotene (400 mg/m2 orally once a day) plus either paclitaxel/carboplatin or cisplatin/vinorelbine chemotherapy, treatment with atorvastatin or fenofibrate was given to manage bexarotene-induced hyperlipidemia. Investigators reported that bexarotene decreased mean atorvastatin systemic exposure (dose-corrected AUC) by approximately 50%, whereas atorvastatin had no significant effect on bexarotene plasma concentrations. In 16 study subjects administered etravirine with atorvastatin 40 mg once a day, atorvastatin AUC decreased by 37%, while Cmax and AUC of 2-hydroxy-atorvastatin increased by 76% and 27%, respectively. Atorvastatin did not significantly affect the pharmacokinetics of etravirine.

MANAGEMENT: The potential for diminished pharmacologic effects of atorvastatin should be considered during coadministration with CYP450 3A4 inducers. Alternative agents with no or minimal CYP450 3A4 induction potential are recommended whenever possible. Otherwise, pharmacologic response to atorvastatin should be closely monitored, and the dosage adjusted as necessary. A statin that is not metabolized by CYP450 3A4 such as fluvastatin, pitavastatin, pravastatin, or rosuvastatin may also be substituted for atorvastatin when used with certain enzyme inducers.

References

  1. "Product Information. Lipitor (atorvastatin)." Parke-Davis PROD (2001):
  2. Murphy MJ, Dominiczak MH "Efficacy of statin therapy: possible effect of phenytoin." Postgrad Med J 75 (1999): 359-60
  3. Gerber JG, Rosenkranz SL, Fichtenbaum CJ, et al. "Effect of efavirenz on the pharmacokinetics of simvastatin, atorvastatin, and pravastatin: results of AIDS Clinical Trials Group 5108 Study." J Acquir Immune Defic Syndr 39 (2005): 307-12
  4. Khandwala HM "Lipid lowering inefficacy of high-dose statin therapy due to concurrent use of phenytoin." South Med J 99 (2006): 1385-7
  5. Bullman J, Nicholls A, Van Landingham K, et al. "Effects of lamotrigine and phenytoin on the pharmacokinetics of atorvastatin in healthy volunteers." Epilepsia 52 (2011): 1351-8
View all 5 references

Switch to consumer interaction data

Moderate

atorvastatin ezetimibe

Applies to: Liptruzet (atorvastatin / ezetimibe) and Liptruzet (atorvastatin / ezetimibe)

MONITOR: Coadministration with ezetimibe may rarely increase the risk of myopathy and serum transaminase elevations associated with HMG-CoA reductase inhibitors (i.e., statins). The mechanism of interaction is unknown. A case report describes two patients whose serum creatine kinase increased after ezetimibe was added to their statin therapy (atorvastatin and fluvastatin, respectively). One of the patients also developed myalgia and tendinopathy, which resolved promptly after withdrawal of both drugs. Statin therapy was subsequently reintroduced at the previous dosage without incident. In the other patient, serum creatine kinase returned to normal within 4 weeks after discontinuation of ezetimibe while the statin was continued. On the contrary, no cases of myopathy or tendinopathy occurred in a study of 33 hypercholesterolemic patients treated with ezetimibe and atorvastatin or simvastatin. There were also no reports of myopathy or significant increases in serum creatine kinase in a study of 32 subjects treated with ezetimibe and fluvastatin. In controlled clinical studies, the incidence of consecutive elevations (greater than 3 times the upper limit of normal) in serum transaminases was 1.3% for patients treated with ezetimibe in combination with a statin versus 0.4% for patients treated with a statin alone. These elevations were generally asymptomatic, not associated with cholestasis, and returned to baseline after discontinuation of therapy or with continued treatment.

MANAGEMENT: Until further information is available, use of a statin in combination with ezetimibe should be approached with caution. Patients should be advised to promptly report to their physician any unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever. The drugs should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. In addition, liver function tests should be performed at initiation of therapy and according to the recommendations of the HMG-CoA reductase inhibitor.

References

  1. Gagne C, Gaudet D, Bruckert E "Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia." Circulation 105 (2002): 2469-75
  2. Fux R, Morike K, Gundel UF, Hartmann R, Gleiter CH "Ezetimibe and statin-associated myopathy." Ann Intern Med 140 (2004): 671-2

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: Alagesic LQ (acetaminophen / butalbital / caffeine)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Major

butalbital food

Applies to: Alagesic LQ (acetaminophen / butalbital / caffeine)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J 94 (1966): 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med 51 (1971): 346-51
  3. Saario I, Linnoila M "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh) 38 (1976): 382-92
  4. Stead AH, Moffat AC "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol 2 (1983): 5-14
  5. Seixas FA "Drug/alcohol interactions: avert potential dangers." Geriatrics 34 (1979): 89-102
View all 5 references

Switch to consumer interaction data

Moderate

atorvastatin food

Applies to: Liptruzet (atorvastatin / ezetimibe)

GENERALLY AVOID: Coadministration with grapefruit juice may increase the plasma concentrations of atorvastatin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. When a single 40 mg dose of atorvastatin was coadministered with 240 mL of grapefruit juice, atorvastatin peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 16% and 37%, respectively. Greater increases in Cmax (up to 71%) and/or AUC (up to 2.5 fold) have been reported with excessive consumption of grapefruit juice (>=750 mL to 1.2 liters per day). Clinically, high levels of HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death.

ADJUST DOSING INTERVAL: Fibres such as oat bran and pectin may diminish the pharmacologic effects of HMG-CoA reductase inhibitors by interfering with their absorption from the gastrointestinal tract.

MANAGEMENT: Patients receiving therapy with atorvastatin should limit their consumption of grapefruit juice to no more than 1 liter per day. Patients should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. In addition, patients should either refrain from the use of oat bran and pectin or, if concurrent use cannot be avoided, to separate the administration times by at least 2 to 4 hours.

References

  1. Richter WO, Jacob BG, Schwandt P "Interaction between fibre and lovastatin." Lancet 338 (1991): 706
  2. McMillan K "Considerations in the formulary selection of hydroxymethylglutaryl coenzyme a reductase inhibitors." Am J Health Syst Pharm 53 (1996): 2206-14
  3. "Product Information. Lipitor (atorvastatin)." Parke-Davis PROD (2001):
  4. Boberg M, Angerbauer R, Fey P, Kanhai WK, Karl W, Kern A, Ploschke J, Radtke M "Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P45 isozymes involved." Drug Metab Dispos 25 (1997): 321-31
  5. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  6. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  7. Neuvonen PJ, Backman JT, Niemi M "Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin." Clin Pharmacokinet 47 (2008): 463-74
View all 7 references

Switch to consumer interaction data

Minor

caffeine food

Applies to: Alagesic LQ (acetaminophen / butalbital / caffeine)

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy 16 (1996): 1046-52

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.