Skip to main content

Drug Interactions between Aggrenox and sparsentan

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

aspirin sparsentan

Applies to: Aggrenox (aspirin / dipyridamole) and sparsentan

MONITOR: Nonsteroidal anti-inflammatory drugs (NSAIDs) may attenuate the antihypertensive effects of angiotensin II receptor antagonists. The proposed mechanism is NSAID-induced inhibition of renal prostaglandin synthesis, which results in unopposed pressor activity producing hypertension. In addition, NSAIDs can cause fluid retention, which also affects blood pressure. Clinical data are limited.

MONITOR: Concomitant use of NSAIDs and angiotensin II receptor antagonists may cause deterioration in renal function, particularly in patients who are elderly or volume-depleted (including those on diuretic therapy) or have compromised renal function. Acute renal failure may occur, although effects are usually reversible. Chronic use of NSAIDs alone may be associated with renal toxicities, including elevations in serum creatinine and BUN, tubular necrosis, glomerulitis, renal papillary necrosis, acute interstitial nephritis, nephrotic syndrome, and renal failure. Additionally, in patients with prerenal conditions whose renal perfusion may be dependent on the function of prostaglandins, NSAIDs may precipitate overt renal decompensation via a dose-related inhibition of prostaglandin synthesis. Angiotensin II receptor antagonists can further worsen renal function by blocking the effect of angiotensin II-mediated efferent arteriolar vasoconstriction, thereby decreasing glomerular filtration.

MANAGEMENT: Patients receiving angiotensin II receptor antagonists who require prolonged (greater than 1 week) concomitant therapy with an NSAID should have blood pressure monitored more closely following initiation, discontinuation, or change of dosage of the NSAID. Renal function should also be evaluated periodically during prolonged coadministration. The interaction is not expected to occur with low doses (e.g., low-dose aspirin) or intermittent short-term administration of NSAIDs.

References

  1. Radack KL, Deck CC, Bloomfield SS (1987) "Ibuprofen interferes with the efficacy of antihypertensive drugs: a randomized, double-blind, placebo-controlled trial of ibuprofen compared with acetaminophen." Ann Intern Med, 107, p. 628-35
  2. (2002) "Product Information. Toradol (ketorolac)." Roche Laboratories
  3. "Multum Information Services, Inc. Expert Review Panel"
  4. (2001) "Product Information. Celebrex (celecoxib)." Searle
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Major

sparsentan food

Applies to: sparsentan

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of sparsentan, which is primarily metabolized by CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported for other CYP450 3A4 inhibitors. Concomitant use with potent CYP450 3A4 inhibitor itraconazole increased sparsentan peak plasma concentration (Cmax) and systemic exposure (AUC) by 25% and 174%, respectively. Increased exposure to sparsentan may increase the risk of hepatotoxicity, acute kidney injury, hyperkalemia, edema, and hypotension. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition.

MONITOR CLOSELY: Moderate-to-high dietary intake of potassium, especially salt substitutes, may increase the risk of hyperkalemia in some patients who are using an endothelin and angiotensin II receptor antagonist such as sparsentan. Sparsentan can promote hyperkalemia through inhibition of the renin-angiotensin-aldosterone system (RAAS). Patients with diabetes, heart failure, dehydration, or renal insufficiency have a greater risk of developing hyperkalemia.

Administration of a single oral dose of sparsentan 800 mg following a high-fat, high-calorie meal (1000 kcal, 50% fat), increased sparsentan AUC and Cmax by 22% and 108%, respectively. However, no clinically significant differences in sparsentan pharmacokinetics were observed following administration of a single 200 mg dose with a high-fat, high-calorie meal.

MANAGEMENT: It may be advisable for patients to avoid the consumption of grapefruit, grapefruit juice, or supplements that contain grapefruit during treatment with sparsentan. Patients should receive dietary counseling and be advised to not use potassium-containing salt substitutes or over-the-counter potassium supplements without consulting their physician. If salt substitutes are used concurrently, regular monitoring of serum potassium levels is recommended. Patients should also be advised to seek medical attention if they experience symptoms of hyperkalemia such as weakness, irregular heartbeat, confusion, tingling of the extremities, or feelings of heaviness in the legs. Advise patients to take the daily dose of sparsentan with water prior to either the morning or evening meal, and to maintain the same dosing schedule with respect to the time of day and in relation to meals.

References

  1. (2023) "Product Information. Filspari (sparsentan)." Travere Therapeutics Inc.

Switch to consumer interaction data

Moderate

dipyridamole food

Applies to: Aggrenox (aspirin / dipyridamole)

ADJUST DOSING INTERVAL: Caffeine and other xanthine derivatives (e.g., theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the vasodilating effect of dipyridamole, an adenosine receptor agonist. In studies of healthy volunteers, caffeine has been shown to reduce the hemodynamic response (i.e., heart rate increases, vasodilation, blood pressure changes) to dipyridamole infusions, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole.

MANAGEMENT: Patients should avoid consumption of caffeine-containing products for at least 24 hours prior to administration of dipyridamole for myocardial perfusion imaging.

References

  1. Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
  2. (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
  3. Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9

Switch to consumer interaction data

Moderate

aspirin food

Applies to: Aggrenox (aspirin / dipyridamole)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Moderate

dipyridamole food

Applies to: Aggrenox (aspirin / dipyridamole)

ADJUST DOSING INTERVAL: Methylxanthines (e.g., caffeine, theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the pharmacologic effects of adenosine and other adenosine receptor agonists such as dipyridamole and regadenoson. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort. Similarly, caffeine has been found to reduce the hemodynamic response to dipyridamole, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole. In a placebo-controlled study that assessed the effects of oral caffeine on regadenoson-induced increase in coronary flow reserve (CFR), healthy subjects who took caffeine 200 mg orally two hours prior to regadenoson administration exhibited a median CFR that was 92% that of subjects who took placebo. The study was done using positron emission tomography with radiolabeled water.

MANAGEMENT: Clinicians should be aware that adenosine and other adenosine receptor agonists may be less effective in the presence of methylxanthines. Methylxanthines including caffeine should be withheld for 12 to 24 hours (or five half-lives) prior to administration of adenosine receptor agonists for myocardial perfusion imaging. However, parenteral aminophylline should be readily available for treating severe or persistent adverse reactions to adenosine receptor agonists such as bronchospasm or chest pain.

References

  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
  3. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  4. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  5. (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
  6. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  7. Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9
  8. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
  9. (2008) "Product Information. Lexiscan (regadenoson)." Astellas Pharma US, Inc
View all 9 references

Switch to consumer interaction data

Minor

aspirin food

Applies to: Aggrenox (aspirin / dipyridamole)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.