Skip to main content

Drug Interactions between Agamree and nivolumab

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

nivolumab vamorolone

Applies to: nivolumab and Agamree (vamorolone)

MONITOR: Although immune checkpoint inhibitors (ICI) such as programmed cell death-1 (PD-1), programmed death ligand-1 inhibitors (PD-L1), and anti-CTLA-4 monoclonal antibodies may be indicated for use in combination in with other immunosuppressive agents, their pharmacodynamic effects and efficacy may be affected by corticosteroids and immunosuppressants. The mechanism of this interaction is related to the immunosuppressive effects of corticosteroids and other immunosuppressants, particularly their inhibition of T-cell activation, which may reduce the efficacy of immune checkpoint inhibitors that rely on a strong immune response to target tumor cells. Additionally, immune-related adverse events (irAEs) from ICIs may indicate a stronger immune response and improved tumor outcomes and treating them with immunosuppressive agents could therefore reduce immune activity and the efficacy of ICIs. For instance, data from the Dutch Melanoma Treatment Registry (DTMR) showed that patients with advanced melanoma who experienced severe ICI toxicity had a longer median overall survival (OS) (23 months vs. 15 months), but those needing anti-TNF therapy for steroid-refractory toxicity had worse outcomes (17 months vs. 27 months with steroids alone). In a study of patients with advanced NSCLC (n=640), oral or intravenous corticosteroid use (>/= 10 mg prednisone equivalent per day) at the time of or within 30 days of starting PD-1/PD-L1 blockade with either pembrolizumab, nivolumab, atezolizumab, or durvalumab (n=90) was associated with decreased response and overall poorer outcomes, compared to those who received and discontinued corticosteroid treatment prior to commencing PD-1/PD-L1 therapy. Further, an international multicenter cohort study in melanoma patients who developed irAEs with ICI therapy found that higher peak doses of corticosteroids, but not cumulative doses, were associated with worse survival, though the impact of second-line immunosuppressants remains unclear. A prospective observational study using data from a German multicenter skin cancer registry (ADOREG) evaluated patients with unresectable advanced melanoma who received immunosuppressive therapy (IST) (e.g., methylprednisolone, prednisolone, dexamethasone, infliximab, interferon, methotrexate) within 60 days before or within 30 days after the start of an ICI. The initiation of IST before, but not after the start of ICI, was associated with worse progression free survival in patients without brain metastasis, and worse OS in patients with brain metastasis. However, based on available literature, it is difficult to determine whether these effects are due to corticosteroid and/or immunosuppressant use or if they reflect subgroups of patients in studies with poorer prognoses.

MANAGEMENT: Caution and closer monitoring for reduced efficacy of immune checkpoint inhibitors (ICI) is advised if corticosteroids and/or other immunosuppressants are used concurrently. Based on available literature, the use of immunosuppressants and/or systemic corticosteroids (>=10 mg prednisone equivalent/day) should be avoided at the time of, or within 30 to 60 days of starting therapy with an ICI if clinically possible. Corticosteroids and/or immunosuppressants can generally be safely used for the treatment of immune-mediated reactions after starting an ICI. Some manufacturers advise that corticosteroids may be used as premedication when the ICI is used in combination with chemotherapy, as antiemetic prophylaxis, and/or to alleviate chemotherapy-related adverse effects. Individual product labeling for the ICI in question should be consulted for specific recommendations.

References (29)
  1. Arbour KC, Mezquita L, Long N, et al. (2018) "Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer." J Clin Oncol, 36, p. 2872-2878
  2. (2020) "Product Information. Novoeight (antihemophilic factor)." Novo Nordisk Pharmaceuticals Inc
  3. Horvat TZ, Adel NG, Dand TO, et al. (2015) "Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center." J Clin Oncol, 33, p. 3193-8
  4. Jove M, Vilarino N, Nadal E (2019) "Impact of baseline steroids on efficacy of programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) blockade in patients with advanced non-small cell lung cancer." Transl Lung Cancer Res, 8, S364-8
  5. Scott SC, Pennell NA (2018) "Early use of systemic corticosteroids in patients with advanced NSCLC treated with nivolumab." J Thorac Oncol, 13, p. 1771-5
  6. Fuca G, Galli G, Poggi M, et al. (2019) "Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors." ESMO Open, 4, e000457
  7. (2022) "Product Information. Imfinzi (durvalumab)." AstraZeneca Pty Ltd
  8. (2023) "Product Information. Yervoy (ipilimumab)." Bristol-Myers Squibb, SUPPL-129
  9. (2021) "Product Information. Yervoy (ipilimumab)." Bristol-Myers Squibb Australia Pty Ltd, V15.0
  10. (2022) "Product Information. Yervoy (ipilimumab)." Bristol-Myers Squibb Pharmaceuticals Ltd
  11. (2023) "Product Information. Libtayo (cemiplimab)." Regeneron Pharmaceuticals Inc, SUPPL-16
  12. (2023) "Product Information. Libtayo (cemiplimab)." Sanofi-Aventis Australia Pty Ltd, lib-ccdsv7-piv4-05ju
  13. (2023) "Product Information. Libtayo (cemiplimab)." Sanofi
  14. (2023) "Product Information. Tecentriq (atezolizumab)." Genentech, SUPPL-51
  15. (2023) "Product Information. Imfinzi (durvalumab)." Astra-Zeneca Pharmaceuticals, SUPPL-42
  16. (2023) "Product Information. Opdualag (nivolumab-relatlimab)." (Obsolete) Bristol-Myers Squibb Australia Pty Ltd, 2
  17. (2022) "Product Information. Opdualag (nivolumab-relatlimab)." Bristol-Myers Squibb
  18. (2024) "Product Information. Keytruda (pembrolizumab)." Merck Sharp & Dohme LLC, SUPPL-160
  19. (2024) "Product Information. Keytruda (pembrolizumab)." Merck Sharp & Dohme (Australia) Pty Ltd
  20. (2024) "Product Information. Keytruda (pembrolizumab)." Merck Sharp & Dohme (UK) Ltd
  21. (2024) "Product Information. Tecentriq (atezolizumab)." Roche Products Pty Ltd
  22. (2024) "Product Information. Tecentriq Hybreza (atezolizumab-hyaluronidase)." Genentech
  23. Kochanek C, Gilde C, Zimmer L, et al (2024) Effects of an immunosuppressive therapy on the efficacy of immune checkpoint inhibition in metastatic melanoma - An analysis of the prospective skin cancer registry ADOREG https://www.sciencedirect.com/science/article/pii/S0959804923008109#:~:text=Immuno
  24. Verheijden RJ, Burgers FH, Janssen J, et al (2024) Corticosteroids and other immunosuppressants for immune-related adverse events and checkpoint inhibitor effectiveness in melanoma https://www.ejcancer.com/article/S0959-8049(24)00828-1/fulltext#:~:text=Recent%20studies%20indicate%20an%20association,secon
  25. Verheijden RJ, May AM, Black CU, et al. (2024) Association of anti-TNF with decreased survival in steroid refractory ipilimumab and anti-PD1-treated patients in the dutch melanoma treatment registry https://pubmed.ncbi.nlm.nih.gov/31988197/
  26. (2024) "Product Information. Tecentriq (atezolizumab)." Roche Products Ltd
  27. (2024) "Product Information. Imfinzi (durvalumab)." AstraZeneca UK Ltd
  28. Kostine M, Mauric E, Tison A, et al. (2021) "Baseline co-medications may alter the anti-tumoural effect of checkpoint inhibitors as well as the risk of immune-related adverse events." Eur J Cancer, 157, p. 474-84
  29. BeiGene AUS (2025) Australian product information Tevimbra (tislelizumab (rch)) https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent=&id=CP-2024-PI-02006-1&d=20250108172310101&d=20250108172310101.&d=20250130172310101

Drug and food interactions

Moderate

vamorolone food

Applies to: Agamree (vamorolone)

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of vamorolone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism in the gut wall by certain compounds present in grapefruit. The metabolism of vamorolone is mediated by the isoenzymes CYP450 3A4/5, and CYP450 2C8, and uridine diphosphate glucuronosyltransferases (UGT) 1A3, 2B7, and 2B17. In general, the effect of grapefruit juice is concentration-, dose-, and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased systemic exposure to vamorolone may increase the risk of corticosteroid adverse effects such as hypercorticism, hyperglycemia, adrenal suppression, immunosuppression, hypertension, salt and water retention, electrolyte abnormalities, behavioral and mood disturbances, posterior subcapsular cataracts, glaucoma, bone loss, and growth retardation in children and adolescents.

MANAGEMENT: Until further information is available, it may be advisable for patients to avoid the consumption of large amounts of grapefruit and grapefruit juice during vamorolone therapy unless otherwise directed by their doctor, as the interaction is unreliable and subject to a high degree of interpatient variation. If coadministration is considered necessary, patients should be closely monitored for signs and symptoms of corticosteroid adverse effects. Patients should also be monitored for signs and symptoms of hypercorticism such as acne, striae, thinning of the skin, easy bruising, moon facies, dorsocervical "buffalo" hump, truncal obesity, increased appetite, acute weight gain, edema, hypertension, hirsutism, hyperhidrosis, proximal muscle wasting and weakness, glucose intolerance, exacerbation of preexisting diabetes, and depression. Signs and symptoms of adrenal insufficiency include anorexia, hypoglycemia, nausea, vomiting, weight loss, muscle wasting, fatigue, weakness, dizziness, postural hypotension, depression, and adrenal crisis manifested as an inability to respond to stress (e.g., illness, infection, surgery, trauma). Consultation with product labeling for specific recommendations is advisable.

References (30)
  1. Zurcher RM, Frey BM, Frey FJ (1989) "Impact of ketoconazole on the metabolism of prednisolone." Clin Pharmacol Ther, 45, p. 366-72
  2. Yamashita SK, Ludwig EA, Middleton E Jr, Jusko WJ (1991) "Lack of pharmacokinetic and pharmacodynamic interactions between ketoconazole and prednisolone." Clin Pharmacol Ther, 49, p. 558-70
  3. Ulrich B, Frey FJ, Speck RF, Frey BM (1992) "Pharmacokinetics/pharmacodynamics of ketoconazole-prednisolone interaction." J Pharmacol Exp Ther, 260, p. 487-90
  4. Kandrotas RJ, Slaughter RL, Brass C, Jusko WJ (1987) "Ketoconazole effects on methylprednisolone disposition and their joint suppression of endogenous cortisol." Clin Pharmacol Ther, 42, p. 465-70
  5. Glynn AM, Slaughter RL, Brass C, et al. (1986) "Effects of ketoconazole on methylprednisolone pharmacokinetics and cortisol secretion." Clin Pharmacol Ther, 39, p. 654-9
  6. Itkin IH, Menzel ML (1970) "The use of macrolide antibiotic substances in the treatment of asthma." J Allergy Clin Immunol, 45, p. 146-62
  7. LaForce CF, Szefler SJ, Miller MF, Ebling W, Brenner M (1983) "Inhibition of methylprednisolone elimination in the presence of erythromycin therapy." J Allergy Clin Immunol, 72, p. 34-9
  8. Finkenbine RD, Frye MD (1998) "Case of psychosis due to prednisone-clarithromycin interaction." Gen Hosp Psychiat, 20, p. 325-6
  9. Varis T, Kaukonen KM, Kivisto KT, Neuvonen PJ (1998) "Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole." Clin Pharmacol Ther, 64, p. 363-8
  10. Hillebrand-Haverkort ME, Prummel MF, ten Veen JH (1999) "Ritonavir-induced Cushing's syndrome in a patient treated with nasal fluticasone." AIDS, 13, p. 1803
  11. Varis T, Kivisto KT, Neuvonen PJ (2000) "The effect of itraconazole on the pharmacokinetics and pharmacodynamics of oral prednisolone." Eur J Clin Pharmacol, 56, p. 57-60
  12. Varis T, Backman JT, Kivisto KT, Neuvonen PJ (2000) "Diltiazem and mibefradil increase the plasma concentrations and greatly enhance the adrenal-suppressant effect of oral methylprednisolone." Clin Pharmacol Ther, 67, p. 215-21
  13. Garey KW, Rubinstein I, Gotfried MH, Khan IJ, Varma S, Danziger LH (2000) "Long-term clarithromycin decreases prednisone requirements in elderly patients with prednisone-dependent asthma." Chest, 118, p. 1826-7
  14. Lebrun-Vignes B, Archer VC, Diquest B, et al. (2001) "Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects." Br J Clin Pharmacol, 51, p. 443-50
  15. Couturier J, Steele M, Hussey L, Pawliuk G (2001) "Steroid-induced mania in an adolescent: risk factors and management." Can J Clin Pharmacol, 8, p. 109-12
  16. Gupta SK, Dube MP (2002) "Exogenous Cushing syndrome mimicking human immunodeficiency virus lipodystrophy." Clin Infect Dis, 35, E69-71
  17. Raaska K, Niemi M, Neuvonen M, Neuvonen PJ, Kivisto KT (2002) "Plasma concentrations of inhaled budesonide and its effects on plasma cortisol are increased by the cytochrome P4503A4 inhibitor itraconazole." Clin Pharmacol Ther, 72, p. 362-369
  18. Main KM, Skov M, Sillesen IB, et al. (2002) "Cushing's syndrome due to pharmacological interaction in a cystic fibrosis patient." Acta Paediatr, 91, p. 1008-11
  19. Skov M, Main KM, Sillesen IB, Muller J, Koch C, Lanng S (2002) "Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide." Eur Respir J, 20, p. 127-33
  20. Kotlyar M, Brewer ER, Golding M, Carson SW (2003) "Nefazodone inhibits methylprednisolone disposition and enhances its adrenal-suppressant effect." J Clin Psychopharmacol, 23, p. 652-6
  21. Bolland MJ, Bagg W, Thomas MG, Lucas JA, Ticehurst R, Black PN (2004) "Cushing's syndrome due to interaction between inhaled corticosteroids and itraconazole." Ann Pharmacother, 38, p. 46-9
  22. Edsbacker S, Andersson T (2004) "Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn's disease." Clin Pharmacokinet, 43, p. 803-21
  23. Samaras K, Pett S, Gowers A, McMurchie M, Cooper DA (2005) "Iatrogenic Cushing's syndrome with osteoporosis and secondary adrenal failure in HIV-infected patients receiving inhaled corticosteroids and ritonavir-boosted protease inhibitors: six cases." J Clin Endocrinol Metab, 90, p. 4394-8
  24. Soldatos G, Sztal-Mazer S, Woolley I, Stockigt J (2005) "Exogenous glucocorticoid excess as a result of ritonavir-fluticasone interaction." Intern Med J, 35, p. 67-8
  25. Penzak SR, Formentini E, Alfaro RM, Long M, Natarajan V, Kovacs J (2005) "Prednisolone pharmacokinetics in the presence and absence of ritonavir after oral prednisone administration to healthy volunteers." J Acquir Immune Defic Syndr, 40, p. 573-80
  26. EMEA. European Medicines Agency (2007) EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid
  27. Bhumbra NA, Sahloff EG, Oehrtman SJ, Horner JM (2007) "Exogenous Cushing syndrome with inhaled fluticasone in a child receiving lopinavir/ritonavir." Ann Pharmacother, 41, p. 1306-9
  28. Busse KH, Formentini E, Alfaro RM, Kovacs JA, Penzak SR (2008) "Influence of antiretroviral drugs on the pharmacokinetics of prednisolone in HIV-infected individuals." J Acquir Immune Defic Syndr, 48, p. 561-6
  29. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  30. (2023) "Product Information. Agamree (vamorolone)." Santhera Pharmaceuticals (US)

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.