Drug Interactions between Agamree and cyclosporine
This report displays the potential drug interactions for the following 2 drugs:
- Agamree (vamorolone)
- cyclosporine
Interactions between your drugs
cycloSPORINE vamorolone
Applies to: cyclosporine and Agamree (vamorolone)
MONITOR: Coadministration of cyclosporine with a corticosteroid may result in altered (usually elevated) plasma concentrations of one or both drugs. Cyclosporine and corticosteroids undergo metabolism primarily by CYP450 3A4, thus competitive inhibition of metabolic clearance may occur during concomitant use. Plasma prednisolone concentrations have been reported to increase during coadministration with cyclosporine in transplant patients, resulting in symptoms of hypercorticism. Similarly, trough plasma levels of cyclosporine increased following the addition of methylprednisolone in a group of patients treated for transplant rejection, some of whom required a reduction in cyclosporine dosage. There have also been isolated reports of seizures in patients receiving cyclosporine with high-dose methylprednisolone, although a causal relationship has not been established. Clinical data are not available for other corticosteroids. While all corticosteroids are believed to be substrates of CYP450 3A4 and may be competitive inhibitors of cyclosporine metabolism, dexamethasone has also been reported to induce this isoenzyme, thus it may reduce levels of cyclosporine.
MANAGEMENT: Caution is advised during concomitant therapy with cyclosporine and corticosteroids. Pharmacologic responses and/or plasma drug levels should be monitored more closely whenever one or the other agent is added to or withdrawn from therapy in patients stabilized on their existing therapeutic regimen, and the dosage(s) adjusted as necessary. During concomitant therapy, patients should be observed for symptoms of hypercorticism (e.g., acne, bruising easily, moon face, edema, hirsutism, buffalo hump, skin striae) and cyclosporine toxicity (e.g., renal dysfunction, hypertension, convulsions, tremors).
References (4)
- Langhoff E, Madsen S, Flachs H, et al. (1985) "Inhibition of prednisolone metabolism by cyclosporine in kidney-transplanted patients." Transplantation, 39, p. 107-9
- Ost L (1984) "Effects of cyclosporin on prednisolone metabolism." Lancet, 1, p. 451
- Klintmalm G, Sawe J (1984) "High dose methylprednisolone increases plasma cyclosporin levels in renal transplant recipients." Lancet, 1, p. 731
- Durrant S, Chipping PM, Palmer S, Gordon-Smith EC (1982) "Cyclosporin A, methylprednisolone, and convulsions." Lancet, 2, p. 829-30
Drug and food interactions
cycloSPORINE food
Applies to: cyclosporine
GENERALLY AVOID: Administration with grapefruit juice (compared to water or orange juice) has been shown to increase blood concentrations of cyclosporine with a relatively high degree of interpatient variability. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits.
GENERALLY AVOID: Administration with red wine or purple grape juice may decrease blood concentrations of cyclosporine. In 12 healthy volunteers, 12 ounces total of a merlot consumed 15 minutes prior to and during cyclosporine administration (single 8 mg/kg dose of Sandimmune) decreased cyclosporine peak blood concentration (Cmax) and systemic exposure (AUC) by 38% and 30%, respectively, compared to water. The time to reach peak concentration (Tmax) doubled, and oral clearance increased 50%. Similarly, one study were 12 healthy patients were administered purple grape juice and a single dose of cyclosporine showed a 30% and a 36% decrease in cyclosporine systemic exposure (AUC) and peak blood concentration (Cmax), respectively. The exact mechanism of interaction is unknown but may involve decreased cyclosporine absorption.
MONITOR: Food has been found to have variable effects on the absorption of cyclosporine. There have been reports of impaired, unchanged, and enhanced absorption during administration with meals relative to the fasting state. The mechanisms are unclear. Some investigators found an association with the fat content of food. In one study, increased fat intake resulted in significantly increased cyclosporine bioavailability and clearance. However, the AUC and pharmacodynamics of cyclosporine were not significantly affected, thus clinical relevance of these findings may be minimal.
MANAGEMENT: Patients receiving cyclosporine therapy should be advised to either refrain from or avoid fluctuations in the consumption of grapefruits and grapefruit juice. Until more data are available, the consumption of red wine or purple grape juice should preferably be avoided or limited. All oral formulations of cyclosporine should be administered on a consistent schedule with regard to time of day and relation to meals so as to avoid large fluctuations in plasma drug levels.
References (13)
- Honcharik N, Yatscoff RW, Jeffery JR, Rush DN (1991) "The effect of meal composition on cyclosporine absorption." Transplantation, 52, p. 1087-9
- Ducharme MP, Provenzano R, Dehoornesmith M, Edwards DJ (1993) "Trough concentrations of cyclosporine in blood following administration with grapefruit juice." Br J Clin Pharmacol, 36, p. 457-9
- Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
- Hollander AAMJ, Vanrooij J, Lentjes EGWM, Arbouw F, Vanbree JB, Schoemaker RC, Vanes LA, Vanderwoude FJ, Cohen AF (1995) "The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients." Clin Pharmacol Ther, 57, p. 318-24
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Tan KKC, Trull AK, Uttridge JA, Metcalfe S, Heyes CS, Facey S, Evans DB (1995) "Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients." Clin Pharmacol Ther, 57, p. 425-33
- Yee GC, Stanley DL, Pessa LJ, et al. (1995) "Effect of grrapefruit juice on blood cyclosporin concentration." Lancet, 345, p. 955-6
- Ducharme MP, Warbasse LH, Edwards DJ (1995) "Disposition of intravenous and oral cyclosporine after administration with grapefruit juice." Clin Pharmacol Ther, 57, p. 485-91
- Ioannidesdemos LL, Christophidis N, Ryan P, Angelis P, Liolios L, Mclean AJ (1997) "Dosing implications of a clinical interaction between grapefruit juice and cyclosporine and metabolite concentrations in patients with autoimmune diseases." J Rheumatol, 24, p. 49-54
- Min DI, Ku YM, Perry PJ, Ukah FO, Ashton K, Martin MF, Hunsicker LG (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics in renal transplant patients." Transplantation, 62, p. 123-5
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
- Tsunoda SM, Harris RZ, Christians U, et al. (2001) "Red wine decreases cyclosporine bioavailability." Clin Pharmacol Ther, 70, p. 462-7
- Oliveira-Freitas VL, Dalla Costa T, Manfro RC, Cruz LB, Schwartsmann G (2010) "Influence of purple grape juice in cyclosporine availability." J Ren Nutr, 20, p. 309-13
vamorolone food
Applies to: Agamree (vamorolone)
GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of vamorolone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism in the gut wall by certain compounds present in grapefruit. The metabolism of vamorolone is mediated by the isoenzymes CYP450 3A4/5, and CYP450 2C8, and uridine diphosphate glucuronosyltransferases (UGT) 1A3, 2B7, and 2B17. In general, the effect of grapefruit juice is concentration-, dose-, and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased systemic exposure to vamorolone may increase the risk of corticosteroid adverse effects such as hypercorticism, hyperglycemia, adrenal suppression, immunosuppression, hypertension, salt and water retention, electrolyte abnormalities, behavioral and mood disturbances, posterior subcapsular cataracts, glaucoma, bone loss, and growth retardation in children and adolescents.
MANAGEMENT: Until further information is available, it may be advisable for patients to avoid the consumption of large amounts of grapefruit and grapefruit juice during vamorolone therapy unless otherwise directed by their doctor, as the interaction is unreliable and subject to a high degree of interpatient variation. If coadministration is considered necessary, patients should be closely monitored for signs and symptoms of corticosteroid adverse effects. Patients should also be monitored for signs and symptoms of hypercorticism such as acne, striae, thinning of the skin, easy bruising, moon facies, dorsocervical "buffalo" hump, truncal obesity, increased appetite, acute weight gain, edema, hypertension, hirsutism, hyperhidrosis, proximal muscle wasting and weakness, glucose intolerance, exacerbation of preexisting diabetes, and depression. Signs and symptoms of adrenal insufficiency include anorexia, hypoglycemia, nausea, vomiting, weight loss, muscle wasting, fatigue, weakness, dizziness, postural hypotension, depression, and adrenal crisis manifested as an inability to respond to stress (e.g., illness, infection, surgery, trauma). Consultation with product labeling for specific recommendations is advisable.
References (30)
- Zurcher RM, Frey BM, Frey FJ (1989) "Impact of ketoconazole on the metabolism of prednisolone." Clin Pharmacol Ther, 45, p. 366-72
- Yamashita SK, Ludwig EA, Middleton E Jr, Jusko WJ (1991) "Lack of pharmacokinetic and pharmacodynamic interactions between ketoconazole and prednisolone." Clin Pharmacol Ther, 49, p. 558-70
- Ulrich B, Frey FJ, Speck RF, Frey BM (1992) "Pharmacokinetics/pharmacodynamics of ketoconazole-prednisolone interaction." J Pharmacol Exp Ther, 260, p. 487-90
- Kandrotas RJ, Slaughter RL, Brass C, Jusko WJ (1987) "Ketoconazole effects on methylprednisolone disposition and their joint suppression of endogenous cortisol." Clin Pharmacol Ther, 42, p. 465-70
- Glynn AM, Slaughter RL, Brass C, et al. (1986) "Effects of ketoconazole on methylprednisolone pharmacokinetics and cortisol secretion." Clin Pharmacol Ther, 39, p. 654-9
- Itkin IH, Menzel ML (1970) "The use of macrolide antibiotic substances in the treatment of asthma." J Allergy Clin Immunol, 45, p. 146-62
- LaForce CF, Szefler SJ, Miller MF, Ebling W, Brenner M (1983) "Inhibition of methylprednisolone elimination in the presence of erythromycin therapy." J Allergy Clin Immunol, 72, p. 34-9
- Finkenbine RD, Frye MD (1998) "Case of psychosis due to prednisone-clarithromycin interaction." Gen Hosp Psychiat, 20, p. 325-6
- Varis T, Kaukonen KM, Kivisto KT, Neuvonen PJ (1998) "Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole." Clin Pharmacol Ther, 64, p. 363-8
- Hillebrand-Haverkort ME, Prummel MF, ten Veen JH (1999) "Ritonavir-induced Cushing's syndrome in a patient treated with nasal fluticasone." AIDS, 13, p. 1803
- Varis T, Kivisto KT, Neuvonen PJ (2000) "The effect of itraconazole on the pharmacokinetics and pharmacodynamics of oral prednisolone." Eur J Clin Pharmacol, 56, p. 57-60
- Varis T, Backman JT, Kivisto KT, Neuvonen PJ (2000) "Diltiazem and mibefradil increase the plasma concentrations and greatly enhance the adrenal-suppressant effect of oral methylprednisolone." Clin Pharmacol Ther, 67, p. 215-21
- Garey KW, Rubinstein I, Gotfried MH, Khan IJ, Varma S, Danziger LH (2000) "Long-term clarithromycin decreases prednisone requirements in elderly patients with prednisone-dependent asthma." Chest, 118, p. 1826-7
- Lebrun-Vignes B, Archer VC, Diquest B, et al. (2001) "Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects." Br J Clin Pharmacol, 51, p. 443-50
- Couturier J, Steele M, Hussey L, Pawliuk G (2001) "Steroid-induced mania in an adolescent: risk factors and management." Can J Clin Pharmacol, 8, p. 109-12
- Gupta SK, Dube MP (2002) "Exogenous Cushing syndrome mimicking human immunodeficiency virus lipodystrophy." Clin Infect Dis, 35, E69-71
- Raaska K, Niemi M, Neuvonen M, Neuvonen PJ, Kivisto KT (2002) "Plasma concentrations of inhaled budesonide and its effects on plasma cortisol are increased by the cytochrome P4503A4 inhibitor itraconazole." Clin Pharmacol Ther, 72, p. 362-369
- Main KM, Skov M, Sillesen IB, et al. (2002) "Cushing's syndrome due to pharmacological interaction in a cystic fibrosis patient." Acta Paediatr, 91, p. 1008-11
- Skov M, Main KM, Sillesen IB, Muller J, Koch C, Lanng S (2002) "Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide." Eur Respir J, 20, p. 127-33
- Kotlyar M, Brewer ER, Golding M, Carson SW (2003) "Nefazodone inhibits methylprednisolone disposition and enhances its adrenal-suppressant effect." J Clin Psychopharmacol, 23, p. 652-6
- Bolland MJ, Bagg W, Thomas MG, Lucas JA, Ticehurst R, Black PN (2004) "Cushing's syndrome due to interaction between inhaled corticosteroids and itraconazole." Ann Pharmacother, 38, p. 46-9
- Edsbacker S, Andersson T (2004) "Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn's disease." Clin Pharmacokinet, 43, p. 803-21
- Samaras K, Pett S, Gowers A, McMurchie M, Cooper DA (2005) "Iatrogenic Cushing's syndrome with osteoporosis and secondary adrenal failure in HIV-infected patients receiving inhaled corticosteroids and ritonavir-boosted protease inhibitors: six cases." J Clin Endocrinol Metab, 90, p. 4394-8
- Soldatos G, Sztal-Mazer S, Woolley I, Stockigt J (2005) "Exogenous glucocorticoid excess as a result of ritonavir-fluticasone interaction." Intern Med J, 35, p. 67-8
- Penzak SR, Formentini E, Alfaro RM, Long M, Natarajan V, Kovacs J (2005) "Prednisolone pharmacokinetics in the presence and absence of ritonavir after oral prednisone administration to healthy volunteers." J Acquir Immune Defic Syndr, 40, p. 573-80
- EMEA. European Medicines Agency (2007) EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid
- Bhumbra NA, Sahloff EG, Oehrtman SJ, Horner JM (2007) "Exogenous Cushing syndrome with inhaled fluticasone in a child receiving lopinavir/ritonavir." Ann Pharmacother, 41, p. 1306-9
- Busse KH, Formentini E, Alfaro RM, Kovacs JA, Penzak SR (2008) "Influence of antiretroviral drugs on the pharmacokinetics of prednisolone in HIV-infected individuals." J Acquir Immune Defic Syndr, 48, p. 561-6
- Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
- (2023) "Product Information. Agamree (vamorolone)." Santhera Pharmaceuticals (US)
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.