Skip to main content

Drug Interactions between Adlyxin and Triavil

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

amitriptyline perphenazine

Applies to: Triavil (amitriptyline / perphenazine) and Triavil (amitriptyline / perphenazine)

MONITOR: Coadministration of a phenothiazine with a tricyclic antidepressant (TCA) may result in elevated plasma concentrations of one or both drugs as well as additive adverse effects. Most phenothiazines and TCAs have been found to undergo metabolism by CYP450 2D6, thus competitive inhibition of the enzyme may occur when more than one of these agents are administered. Although these drugs have been used together clinically, the possibility of increased risk of serious adverse effects such as central nervous system depression, tardive dyskinesia, hypotension, and prolongation of the QT interval should be considered, as many of these agents alone can and have produced these effects. In addition, excessive anticholinergic effects may occur in combination use, which can result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of anticholinergic intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures.

MANAGEMENT: Concurrent use of phenothiazines and TCAs should be approached with caution, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication (e.g., abdominal pain, fever, heat intolerance, blurred vision, confusion, hallucinations) or cardiovascular toxicity (e.g., dizziness, palpitations, arrhythmias, syncope). Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A dosage reduction in one or both drugs may be necessary if excessive adverse effects develop.

References

  1. Loga S, Curry S, Lader M "Interaction of chlorpromazine and nortriptyline in patients with schizophrenia." Clin Pharmacokinet 6 (1981): 454-62
  2. Stadnyk AN, Glezos JD "Drug-induced heat stroke." Can Med Assoc J 128 (1983): 957-9
  3. Bock JL, Nelson JC, Gray S, Jatlow PI "Desipramine hydroxylation: variability and effect of antipsychotic drugs." Clin Pharmacol Ther 33 (1983): 322-8
  4. Gram LF, Overo KF "Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man." Br Med J 1 (1972): 463-5
  5. El-Yousef MK, Manier DH "Tricyclic antidepressants and phenothiazines." JAMA 229 (1974): 1419
  6. Hirschowitz J, Bennett JA, Zemlan FP, Garver DL "Thioridazine effect on desipramine plasma levels." J Clin Psychopharmacol 3 (1983): 376-9
  7. Vandel S, Sandoz M, Vandel B, Bonin B, Allers G, Volmat R "Biotransformation of amitriptyline in man: interaction with phenothiazines." Neuropsychobiology 15 (1986): 15-9
  8. Zelman S, Guillan R "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry 126 (1970): 1787-90
  9. Mann SC, Boger WP "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry 135 (1978): 1097-100
  10. Warnes H, Lehmann HE, Ban TA "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J 96 (1967): 1112-3
  11. Siris SG, Cooper TB, Rifkin AE, Brenner R, Lieberman JA "Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate." Am J Psychiatry 139 (1982): 104-6
  12. Johnson AL, Hollister LE, Berger PA "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry 42 (1981): 313-7
  13. Lee BS "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry 47 (1986): 571
  14. Moreau A, Jones BD, Banno V "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry 31 (1986): 339-41
  15. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm 2 (1983): 174-8
  16. Maynard GL, Soni P "Thioridazine interferences with imipramine metabolism and measurement." Ther Drug Monit 18 (1996): 729-31
View all 16 references

Switch to consumer interaction data

Moderate

perphenazine lixisenatide

Applies to: Triavil (amitriptyline / perphenazine) and Adlyxin (lixisenatide)

MONITOR: The efficacy of insulin and other antidiabetic agents may be diminished by certain drugs, including atypical antipsychotics, corticosteroids, diuretics, estrogens, gonadotropin-releasing hormone agonists, human growth hormone, phenothiazines, progestins, protease inhibitors, sympathomimetic amines, thyroid hormones, L-asparaginase, alpelisib, copanlisib, danazol, diazoxide, isoniazid, megestrol, omacetaxine, phenytoin, sirolimus, tagraxofusp, temsirolimus, as well as pharmacologic dosages of nicotinic acid and adrenocorticotropic agents. These drugs may interfere with blood glucose control because they can cause hyperglycemia, glucose intolerance, new-onset diabetes mellitus, and/or exacerbation of preexisting diabetes.

MANAGEMENT: Caution is advised when drugs that can interfere with glucose metabolism are prescribed to patients with diabetes. Close clinical monitoring of glycemic control is recommended following initiation or discontinuation of these drugs, and the dosages of concomitant antidiabetic agents adjusted as necessary. Patients should be advised to notify their physician if their blood glucose is consistently high or if they experience symptoms of severe hyperglycemia such as excessive thirst and increases in the volume or frequency of urination. Likewise, patients should be observed for hypoglycemia when these drugs are withdrawn from their therapeutic regimen.

References

  1. Greenstone MA, Shaw AB "Alternate day corticosteroid causes alternate day hyperglycaemia." Postgrad Med J 63 (1987): 761-4
  2. Pollare T, Lithell H, Berne C "A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension." N Engl J Med 321 (1989): 868-73
  3. Carter BL, Small RE, Mandel MD, Starkman MT "Phenytoin-induced hyperglycemia." Am J Hosp Pharm 38 (1981): 1508-12
  4. Al-Rubeaan K, Ryan EA "Phenytoin-induced insulin insensitivity." Diabet Med 8 (1991): 968-70
  5. Chaudhuri ML, Catania J "A comparison of the effects of bumetanide (Burinex) and frusemide on carbohydrate metabolism in the elderly." Br J Clin Pract 42 (1988): 427-9
  6. Goldman JA, Neri A, Ovadia J, Eckerling B, Vries A, de "Effect of chlorothiazide on intravenous glucose tolerance in pregnancy." Am J Obstet Gynecol 105 (1969): 556-60
  7. Miller NR, Moses H "Transient oculomotor nerve palsy. Association with thiazide-induced glucose intolerance." JAMA 240 (1978): 1887-8
  8. Kansal PC, Buse J, Buse MG "Thiazide diuretics and control of diabetes mellitus." South Med J 62 (1969): 1372-9
  9. Andersen OO, Persson I "Carbohydrate metabolism during treatment with chlorthalidone and ethacrynic acid." Br Med J 2 (1968): 798-801
  10. Curtis J, Horrigan F, Ahearn D, Varney R, Sandler SG "Chlorthalidone-induced hyperosmolar hyperglycemic nonketotic coma." JAMA 220 (1972): 1592-3
  11. Chowdhury FR, Bleicher SJ "Chlorthalidone--induced hypokalemia and abnormal carbohydrate metabolism." Horm Metab Res 2 (1970): 13-6
  12. Diamond MT "Hyperglycemic hyperosmolar coma associated with hydrochlorothiazide and pancreatitis." N Y State J Med 72 (1972): 1741-2
  13. Jones IG, Pickens PT "Diabetes mellitus following oral diuretics." Practitioner 199 (1967): 209-10
  14. Black DM, Filak AT "Hyperglycemia with non-insulin-dependent diabetes following intraarticular steroid injection." J Fam Pract 28 (1989): 462-3
  15. Gunnarsson R, Lundgren G, Magnusson G, Ost L, Groth CG "Steroid diabetes--a sign of overtreatment with steroids in the renal graft recipient?" Scand J Urol Nephrol Suppl 54 (1980): 135-8
  16. Murphy MB, Kohner E, Lewis PJ, Schumer B, Dollery CT "Glucose intolerance in hypertensive patients treated with diuretics: a fourteen-year follow-up." Lancet 2 (1982): 1293-5
  17. Seltzer HS, Allen EW "Hyperglycemia and inhibition of insulin secretion during administration of diazoxide and trichlormethiazide in man." Diabetes 18 (1969): 19-28
  18. Jori A, Carrara MC "On the mechanism of the hyperglycaemic effect of chlorpromazine." J Pharm Pharmacol 18 (1966): 623-4
  19. Erle G, Basso M, Federspil G, Sicolo N, Scandellari C "Effect of chlorpromazine on blood glucose and plasma insulin in man." Eur J Clin Pharmacol 11 (1977): 15-8
  20. "Product Information. Thorazine (chlorpromazine)." SmithKline Beecham PROD (2002):
  21. "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  22. "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  23. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  24. "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical PROD (2002):
  25. "Product Information. Carafate (sucralfate)." Hoechst Marion Roussel PROD (2001):
  26. Stambaugh JE, Tucker DC "Effect of diphenylhydantoin on glucose tolerance in patients with hypoglycemia." Diabetes 23 (1974): 679-83
  27. Malherbe C, Burrill KC, Levin SR, Karam JH, Forsham PH "Effect of diphenylhydantoin on insulin secretion in man." N Engl J Med 286 (1972): 339-42
  28. Javier Z, Gershberg H, Hulse M "Ovulatory suppressants, estrogens, and carbohydrate metabolism." Metabolism 17 (1968): 443-56
  29. Sotaniemi E, Kontturi M, Larmi T "Effect of diethylstilbestrol on blood glucose of prostatic cancer patients." Invest Urol 10 (1973): 438-41
  30. Bell DS "Insulin resistance. An often unrecognized problem accompanying chronic medical disorders." Postgrad Med 93 (1993): 99-103,
  31. Berlin I "Prazosin, diuretics, and glucose intolerance." Ann Intern Med 119 (1993): 860
  32. Rowe P, Mather H "Hyperosmolar non-ketotic diabetes mellitus associated with metolazone." Br Med J 291 (1985): 25-6
  33. Haiba NA, el-Habashy MA, Said SA, Darwish EA, Abdel-Sayed WS, Nayel SE "Clinical evaluation of two monthly injectable contraceptives and their effects on some metabolic parameters." Contraception 39 (1989): 619-32
  34. Virutamasen P, Wongsrichanalai C, Tangkeo P, Nitichai Y, Rienprayoon D "Metabolic effects of depot-medroxyprogesterone acetate in long-term users: a cross-sectional study." Int J Gynaecol Obstet 24 (1986): 291-6
  35. Dimitriadis G, Tegos C, Golfinopoulou L, Roboti C, Raptis S "Furosemide-induced hyperglycaemia - the implication of glycolytic kinases." Horm Metab Res 25 (1993): 557-9
  36. Goldman JA, Ovadia JL "The effect of estrogen on intravenous glucose tolerance in woman." Am J Obstet Gynecol 103 (1969): 172-8
  37. Hannaford PC, Kay CR "Oral contraceptives and diabetes mellitus." BMJ 299 (1989): 1315-6
  38. Spellacy WN, Ellingson AB, Tsibris JC "The effects of two triphasic oral contraceptives on carbohydrate metabolism in women during 1 year of use." Fertil Steril 51 (1989): 71-4
  39. Ludvik B, Clodi M, Kautzky-Willer A, Capek M, Hartter E, Pacini G, Prager R "Effect of dexamethasone on insulin sensitivity, islet amyloid polypeptide and insulin secretion in humans." Diabetologia 36 (1993): 84-7
  40. Domenet JG "Diabetogenic effect of oral diuretics." Br Med J 3 (1968): 188
  41. Coni NK, Gordon PW, Mukherjee AP, Read PR "The effect of frusemide and ethacrynic acid on carbohydrate metabolism." Age Ageing 3 (1974): 85-90
  42. Schmitz O, Hermansen K, Nielsen OH, Christensen CK, Arnfred J, Hansen HE, Mogensen CE, Orskov H, Beck-Nielsen H "Insulin action in insulin-dependent diabetics after short-term thiazide therapy." Diabetes Care 9 (1986): 631-6
  43. Blayac JP, Ribes G, Buys D, Puech R, Loubatieres-Mariani MM "Effects of a new benzothiadiazine derivative, LN 5330, on insulin secretion." Arch Int Pharmacodyn Ther 253 (1981): 154-63
  44. Elmfeldt D, Berglund G, Wedel H, Wilhelmsen L "Incidence and importance of metabolic side-effects during antihypertensive therapy." Acta Med Scand Suppl 672 (1983): 79-83
  45. Winchester JF, Kellett RJ, Boddy K, Boyle P, Dargie HJ, Mahaffey ME, Ward DM, Kennedy AC "Metolazone and bendroflumethiazide in hypertension: physiologic and metabolic observations." Clin Pharmacol Ther 28 (1980): 611-8
  46. Petri M, Cumber P, Grimes L, Treby D, Bryant R, Rawlins D, Ising H "The metabolic effects of thiazide therapy in the elderly: a population study." Age Ageing 15 (1986): 151-5
  47. "Product Information. Glucophage (metformin)." Bristol-Myers Squibb PROD (2001):
  48. Harper R, Ennis CN, Heaney AP, Sheridan B, Gormley M, Atkinson AB, Johnston GD, Bell PM "A comparison of the effects of low- and conventional-dose thiazide diuretic on insulin action in hypertensive patients with NIDDM." Diabetologia 38 (1995): 853-9
  49. "Product Information. Precose (acarbose)." Bayer PROD (2001):
  50. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):
  51. "Product Information. Amaryl (glimepiride)." Hoechst Marion Roussel PROD (2001):
  52. Charan VD, Desai N, Singh AP, Choudhry VP "Diabetes mellitus and pancreatitis as a complication of L- asparaginase therapy." Indian Pediatr 30 (1993): 809-10
  53. Seifer DB, Freedman LN, Cavender JR, Baker RA "Insulin-dependent diabetes mellitus associated with danazol." Am J Obstet Gynecol 162 (1990): 474-5
  54. "Product Information. Crixivan (indinavir)." Merck & Co., Inc PROD (2001):
  55. Pickkers P, Schachter M, Hughes AD, Feher MD, Sever PS "Thiazide-induced hyperglycaemia: a role for calcium-activated potassium channels?" Diabetologia 39 (1996): 861-4
  56. "Product Information. Viracept (nelfinavir)." Agouron Pharma Inc PROD (2001):
  57. Dube MP, Johnson DL, Currier JS, Leedom JM "Protease inhibitor-associated hyperglycaemia." Lancet 350 (1997): 713-4
  58. "Product Information. Oncaspar (pegaspargase)." Rhone Poulenc Rorer PROD (2001):
  59. "Product Information. Prandin (repaglinide)." Novo Nordisk Pharmaceuticals Inc PROD (2001):
  60. "Product Information. Elspar (asparaginase)." Merck & Co., Inc PROD (2001):
  61. "Product Information. Hyperstat (diazoxide)." Apothecon Inc (2022):
  62. "Product Information. Megace (megestrol)." Bristol-Myers Squibb PROD (2001):
  63. Walli R, Demant T "Impaired glucose tolerance and protease inhibitors." Ann Intern Med 129 (1998): 837-8
  64. "Product Information. Agenerase (amprenavir)." Glaxo Wellcome PROD (2001):
  65. Mauss S, Wolf E, Jaeger H "Impaired glucose tolerance in HIV-positive patients receiving and those not receiving protease inhibitors." Ann Intern Med 130 (1999): 162-3
  66. Kaufman MB, Simionatto C "A review of protease inhibitor-induced hyperglycemia." Pharmacotherapy 19 (1999): 114-7
  67. "Product Information. Tolinase (tolazamide)." Pharmacia and Upjohn PROD (2001):
  68. "Product Information. Orinase (tolbutamide)." Pharmacia and Upjohn PROD (2001):
  69. "Product Information. Dymelor (acetohexamide)." Lilly, Eli and Company PROD (2001):
  70. Wehring H, Alexander B, Perry PJ "Diabetes mellitus associated with clozapine therapy." Pharmacotherapy 20 (2000): 844-7
  71. Tsiodras S, Mantzoros C, Hammer S, Samore M "Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy - A 5-year cohort study." Arch Intern Med 160 (2000): 2050-6
  72. "Product Information. Fortovase (saquinavir)." Roche Laboratories PROD (2001):
  73. "Product Information. Starlix (nateglinide)." Novartis Pharmaceuticals PROD (2001):
  74. Hardy H, Esch LD, Morse GD "Glucose disorders associated with HIV and its drug therapy." Ann Pharmacother 35 (2001): 343-51
  75. Leary WP, Reyes AJ "Drug interactions with diuretics." S Afr Med J 65 (1984): 455-61
  76. "Product Information. NovoLOG Mix 70/30 (insulin aspart-insulin aspart protamine)." Novo Nordisk Pharmaceuticals Inc (2022):
  77. "Product Information. Reyataz (atazanavir)." Bristol-Myers Squibb (2003):
  78. "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline (2003):
  79. "Product Information. Apidra (insulin glulisine)." Aventis Pharmaceuticals (2004):
  80. "Product Information. Prezista (darunavir)." Ortho Biotech Inc (2006):
  81. "Product Information. Zolinza (vorinostat)." Merck & Co., Inc (2006):
  82. "Product Information. Torisel (temsirolimus)." Wyeth-Ayerst Laboratories (2007):
  83. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
  84. "Product Information. Elzonris (tagraxofusp)." Stemline Therapeutics (2019):
  85. "Product Information. Piqray (alpelisib)." Novartis Pharmaceuticals (2019):
View all 85 references

Switch to consumer interaction data

Drug and food interactions

Moderate

lixisenatide food

Applies to: Adlyxin (lixisenatide)

ADJUST DOSING INTERVAL: Lixisenatide slows gastric emptying, which may impact the absorption of concomitantly administered oral medications. The interaction has been studied with various medications, which demonstrated primarily an effect on the rate rather than the overall extent of absorption.

Acetaminophen: When acetaminophen 1000 mg was administered 1 hour and 4 hours after lixisenatide 10 mcg injection, acetaminophen peak plasma concentration (Cmax) was decreased by 29% and 31%, respectively; and median time to peak plasma concentration (Tmax) was delayed by 2 hours and 1.75 hours, respectively. The Cmax and Tmax of acetaminophen were not significantly altered when acetaminophen was given one hour before lixisenatide injection, and systemic exposure (AUC) was not affected whether administered before or after lixisenatide administration. Based on these results, no dose adjustment for acetaminophen is required; however, it may be advisable to take acetaminophen at least one hour before lixisenatide if a rapid onset of action is required.

Oral Contraceptives: When an oral contraceptive containing ethinyl estradiol 0.03 mg and levonorgestrel 0.15 mg was administered 1 hour and 4 hours after lixisenatide 10 mcg injection, ethinyl estradiol Cmax was decreased by 52% and 39%, respectively, while levonorgestrel Cmax was decreased by 46% and 20%, respectively. Median Tmax values were delayed by 1 to 3 hours, but overall exposure (AUC) and mean terminal half-life (T1/2) of ethinyl estradiol and levonorgestrel were not significantly altered. Administration of the oral contraceptive 1 hour before or 11 hours after lixisenatide had no effect on any of the measured pharmacokinetic parameters of either ethinyl estradiol or levonorgestrel. Based on these results, no dose adjustment for oral contraceptives is required; however, some authorities recommend that oral contraceptives be administered at least 1 hour before or 11 hours after lixisenatide.

Atorvastatin: When atorvastatin 40 mg and lixisenatide 20 mcg were coadministered in the morning for 6 days, atorvastatin Cmax was decreased by 31% and Tmax was delayed by 3.25 hours, but AUC was not affected. When atorvastatin was administered in the evening and lixisenatide in the morning, the AUC and Cmax of atorvastatin were increased by 27% and 66%, respectively, but there was no change in Tmax. Based on these results, no dose adjustment for atorvastatin is required; however, some authorities recommend that atorvastatin be administered at least 1 hour before lixisenatide.

Warfarin: When warfarin 25 mg was coadministered with repeated dosing of lixisenatide 20 mcg, warfarin Cmax was decreased by 19% and Tmax was delayed by 7 hours, but there were no effects on AUC or International Normalized Ratio (INR). Based on these results, no dose adjustment for warfarin is required; however, closer monitoring of INR may be appropriate following initiation or discontinuation of lixisenatide treatment.

Digoxin: When digoxin 0.25 mg and lixisenatide 20 mcg were coadministered at steady state, digoxin Cmax was decreased by 26% and Tmax was delayed by 1.5 hours, but AUC was not affected. Based on these results, no dose adjustment for digoxin is required.

Ramipril: When ramipril 5 mg and lixisenatide 20 mcg were coadministered for 6 days, ramipril Cmax was decreased by 63% and AUC was increased by 21%, while Cmax and AUC of the active metabolite (ramiprilat) were not affected. The Tmax values of ramipril and ramiprilat were delayed by approximately 2.5 hours. Based on these results, no dose adjustment for ramipril is required.

MANAGEMENT: Caution is advised during concomitant use of lixisenatide with oral medications that have a narrow therapeutic index or that require careful clinical monitoring. These medications should be administered on a consistent schedule relative to lixisenatide, and blood levels and/or pharmacologic effects should be closely monitored. In addition, if they are to be administered with food, patients should be advised to take them with a meal or snack when lixisenatide is not administered. Oral medications that are particularly dependent on threshold concentrations for efficacy, such as antibiotics, or medications for which a delay in effect is undesirable, such as acetaminophen, should be administered at least 1 hour before lixisenatide. Gastro-resistant formulations containing substances sensitive to stomach degradation should be administered 1 hour before or 4 hours after lixisenatide. Patients taking oral contraceptives should be advised to take them at least 1 hour before or 11 hours after lixisenatide.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0

Switch to consumer interaction data

Moderate

amitriptyline food

Applies to: Triavil (amitriptyline / perphenazine)

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References

  1. Dorian P, Sellers EM, Reed KL, et al. "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol 25 (1983): 325-31
  2. Warrington SJ, Ankier SI, Turner P "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology 15 (1986): 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol 24 (1983): 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther 43 (1988): 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther 17 (1975): 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol 51 (1990): 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA "Imipramine disposition in alcoholics." J Clin Psychopharmacol 2 (1982): 2-7
View all 7 references

Switch to consumer interaction data

Moderate

perphenazine food

Applies to: Triavil (amitriptyline / perphenazine)

GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.

MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.

References

  1. Lutz EG "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA 236 (1976): 2422-3
  2. Freed E "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust 2 (1981): 44-5

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.