Skip to main content

Drug Interactions between adenosine and ergonovine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

No interactions were found between adenosine and ergonovine. However, this does not necessarily mean no interactions exist. Always consult your healthcare provider.

adenosine

A total of 214 drugs are known to interact with adenosine.

ergonovine

A total of 258 drugs are known to interact with ergonovine.

Drug and food interactions

Moderate

adenosine food

Applies to: adenosine

ADJUST DOSING INTERVAL: Caffeine and other xanthine derivatives (e.g., theophylline) are nonspecific, competitive antagonists of adenosine receptors and may interfere with the hemodynamic effects of adenosine. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort.

MANAGEMENT: Clinicians should be aware that adenosine may be less effective in the presence of xanthine derivatives including caffeine. Patients should avoid consumption of caffeine-containing products for at least 12 hours, preferably 24 hours, prior to administration of adenosine for myocardial perfusion imaging.

References

  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  3. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  4. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  5. "Multum Information Services, Inc. Expert Review Panel"
  6. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
View all 6 references

Switch to consumer interaction data

Moderate

ergonovine food

Applies to: ergonovine

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

adenosine food

Applies to: adenosine

ADJUST DOSING INTERVAL: Methylxanthines (e.g., caffeine, theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the pharmacologic effects of adenosine and other adenosine receptor agonists such as dipyridamole and regadenoson. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort. Similarly, caffeine has been found to reduce the hemodynamic response to dipyridamole, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole. In a placebo-controlled study that assessed the effects of oral caffeine on regadenoson-induced increase in coronary flow reserve (CFR), healthy subjects who took caffeine 200 mg orally two hours prior to regadenoson administration exhibited a median CFR that was 92% that of subjects who took placebo. The study was done using positron emission tomography with radiolabeled water.

MANAGEMENT: Clinicians should be aware that adenosine and other adenosine receptor agonists may be less effective in the presence of methylxanthines. Methylxanthines including caffeine should be withheld for 12 to 24 hours (or five half-lives) prior to administration of adenosine receptor agonists for myocardial perfusion imaging. However, parenteral aminophylline should be readily available for treating severe or persistent adverse reactions to adenosine receptor agonists such as bronchospasm or chest pain.

References

  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
  3. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  4. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  5. (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
  6. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  7. Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9
  8. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
  9. (2008) "Product Information. Lexiscan (regadenoson)." Astellas Pharma US, Inc
View all 9 references

Switch to consumer interaction data

Minor

adenosine food

Applies to: adenosine

Nicotine may enhance adenosine-associated tachycardia and chest pain. The mechanism is not known. No special precautions appear to be necessary.

References

  1. Smits P, Eijsbouts A, Thien T (1989) "Nicotine enhances the circulatory effects of adenosine in human beings." Clin Pharmacol Ther, 46, p. 272-8
  2. Sylven C, Beermann B, Kaijser L, Jonzon B (1990) "Nicotine enhances angina pectoris-like chest pain and atriovenricular blockade provoked by intravenous bolus of adenosine in healthy volunteers." J Cardiovasc Pharmacol, 16, p. 962-5

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.