Drug Interactions between adenosine and dipyridamole
This report displays the potential drug interactions for the following 2 drugs:
- adenosine
- dipyridamole
Interactions between your drugs
adenosine dipyridamole
Applies to: adenosine and dipyridamole
GENERALLY AVOID: Dipyridamole potentiates the effects of adenosine. The mechanism probably is inhibition of endogenous and exogenous adenosine reuptake, which increases plasma concentrations of adenosine. Severe symptomatic bradycardia and sinus arrest was reported in a 79-year-old patient who had taken her last dose of dipyridamole-aspirin 12 hours before an adenosine heart scan.
MANAGEMENT: The manufacturer recommends discontinuing dipyridamole for 24 hours before administering adenosine. If this is not feasible, reductions in adenosine dosage are recommended. Some experts have suggested that only 25% to 50% of the normal dose is needed to control supraventricular tachycardia.
References (7)
- Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
- Mader TJ (1992) "Adenosine: adverse interactions." Ann Emerg Med, 21, p. 453
- Watt AH, Bernard MS, Webster J, Passani SL, Stephens MR, Routledge PA (1986) "Intravenous adenosine in the treatment of supraventricular tachycardia: a dose-ranging study and interaction with dipyridamole." Br J Clin Pharmacol, 21, p. 227-30
- Biaggioni I, Onrot J, Hollister AS, Robertson D (1986) "Cardiovascular effects of adenosine infusion in man and their modulation by dipyridamole." Life Sci, 39, p. 2229-36
- McCollam PL, Uber WE, Van Bakel AB (1993) "Adenosine-related ventricular asystole ." Ann Intern Med, 118, p. 315-6
- Bergmann SR (2000) "Alert to physicians: Possible interaction of Aggrenox and adenosine." J Am Coll Cardiol, 36, p. 1432
- Littmann L, Anderson JD, Monroe MH (2002) "Adenosine and Aggrenox: a hazardous combination." Ann Intern Med, 137, W1
Drug and food interactions
adenosine food
Applies to: adenosine
ADJUST DOSING INTERVAL: Caffeine and other xanthine derivatives (e.g., theophylline) are nonspecific, competitive antagonists of adenosine receptors and may interfere with the hemodynamic effects of adenosine. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort.
MANAGEMENT: Clinicians should be aware that adenosine may be less effective in the presence of xanthine derivatives including caffeine. Patients should avoid consumption of caffeine-containing products for at least 12 hours, preferably 24 hours, prior to administration of adenosine for myocardial perfusion imaging.
References (6)
- Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
- Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
- Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
- (2001) "Product Information. Adenocard (adenosine)." Fujisawa
- "Multum Information Services, Inc. Expert Review Panel"
- (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
dipyridamole food
Applies to: dipyridamole
ADJUST DOSING INTERVAL: Caffeine and other xanthine derivatives (e.g., theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the vasodilating effect of dipyridamole, an adenosine receptor agonist. In studies of healthy volunteers, caffeine has been shown to reduce the hemodynamic response (i.e., heart rate increases, vasodilation, blood pressure changes) to dipyridamole infusions, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole.
MANAGEMENT: Patients should avoid consumption of caffeine-containing products for at least 24 hours prior to administration of dipyridamole for myocardial perfusion imaging.
References (3)
- Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
- (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
- Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9
adenosine food
Applies to: adenosine
ADJUST DOSING INTERVAL: Methylxanthines (e.g., caffeine, theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the pharmacologic effects of adenosine and other adenosine receptor agonists such as dipyridamole and regadenoson. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort. Similarly, caffeine has been found to reduce the hemodynamic response to dipyridamole, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole. In a placebo-controlled study that assessed the effects of oral caffeine on regadenoson-induced increase in coronary flow reserve (CFR), healthy subjects who took caffeine 200 mg orally two hours prior to regadenoson administration exhibited a median CFR that was 92% that of subjects who took placebo. The study was done using positron emission tomography with radiolabeled water.
MANAGEMENT: Clinicians should be aware that adenosine and other adenosine receptor agonists may be less effective in the presence of methylxanthines. Methylxanthines including caffeine should be withheld for 12 to 24 hours (or five half-lives) prior to administration of adenosine receptor agonists for myocardial perfusion imaging. However, parenteral aminophylline should be readily available for treating severe or persistent adverse reactions to adenosine receptor agonists such as bronchospasm or chest pain.
References (9)
- Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
- Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
- Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
- Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
- (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
- (2001) "Product Information. Adenocard (adenosine)." Fujisawa
- Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9
- (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
- (2008) "Product Information. Lexiscan (regadenoson)." Astellas Pharma US, Inc
dipyridamole food
Applies to: dipyridamole
ADJUST DOSING INTERVAL: Methylxanthines (e.g., caffeine, theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the pharmacologic effects of adenosine and other adenosine receptor agonists such as dipyridamole and regadenoson. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort. Similarly, caffeine has been found to reduce the hemodynamic response to dipyridamole, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole. In a placebo-controlled study that assessed the effects of oral caffeine on regadenoson-induced increase in coronary flow reserve (CFR), healthy subjects who took caffeine 200 mg orally two hours prior to regadenoson administration exhibited a median CFR that was 92% that of subjects who took placebo. The study was done using positron emission tomography with radiolabeled water.
MANAGEMENT: Clinicians should be aware that adenosine and other adenosine receptor agonists may be less effective in the presence of methylxanthines. Methylxanthines including caffeine should be withheld for 12 to 24 hours (or five half-lives) prior to administration of adenosine receptor agonists for myocardial perfusion imaging. However, parenteral aminophylline should be readily available for treating severe or persistent adverse reactions to adenosine receptor agonists such as bronchospasm or chest pain.
References (9)
- Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
- Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
- Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
- Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
- (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
- (2001) "Product Information. Adenocard (adenosine)." Fujisawa
- Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9
- (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
- (2008) "Product Information. Lexiscan (regadenoson)." Astellas Pharma US, Inc
adenosine food
Applies to: adenosine
Nicotine may enhance adenosine-associated tachycardia and chest pain. The mechanism is not known. No special precautions appear to be necessary.
References (2)
- Smits P, Eijsbouts A, Thien T (1989) "Nicotine enhances the circulatory effects of adenosine in human beings." Clin Pharmacol Ther, 46, p. 272-8
- Sylven C, Beermann B, Kaijser L, Jonzon B (1990) "Nicotine enhances angina pectoris-like chest pain and atriovenricular blockade provoked by intravenous bolus of adenosine in healthy volunteers." J Cardiovasc Pharmacol, 16, p. 962-5
Therapeutic duplication warnings
Therapeutic duplication is the use of more than one medicine from the same drug category or therapeutic class to treat the same condition. This can be intentional in cases where drugs with similar actions are used together for demonstrated therapeutic benefit. It can also be unintentional in cases where a patient has been treated by more than one doctor, or had prescriptions filled at more than one pharmacy, and can have potentially adverse consequences.
Cardiac stressing agents
Therapeutic duplication
The recommended maximum number of medicines in the 'cardiac stressing agents' category to be taken concurrently is usually one. Your list includes two medicines belonging to the 'cardiac stressing agents' category:
- adenosine
- dipyridamole
Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.