Skip to main content

Drug Interactions between adenosine / lidocaine / magnesium sulfate and albendazole

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Minor

lidocaine albendazole

Applies to: adenosine / lidocaine / magnesium sulfate and albendazole

Coadministration with inducers of CYP450 1A2 and/or 3A4 may decrease the plasma concentrations of lidocaine, which is primarily metabolized by these isoenzymes. In four healthy volunteers (2 smokers and 2 nonsmokers), administration of a single 400 mg oral dose of lidocaine following pretreatment with the CYP450 inducer phenobarbital (15 mg/day for 4 weeks, followed by 30 mg/day for 4 weeks) decreased lidocaine systemic exposure (AUC) by 37% and increased its oral clearance by 56% compared to administration of lidocaine alone. In another study, the mean bioavailability of a single 750 mg oral dose of lidocaine in six patients receiving chronic antiepileptic drug therapy (consisting of one or more of the following enzyme-inducing anticonvulsants: phenobarbital, primidone, phenytoin, carbamazepine) was approximately 2.5-fold lower than that reported for six healthy control subjects, while intrinsic clearance was nearly threefold higher. By contrast, the interaction was modest for lidocaine administered intravenously, suggesting induction of primarily hepatic first-pass rather than systemic metabolism of lidocaine. When a single 100 mg dose of lidocaine was given intravenously, mean lidocaine AUC was reduced by less than 10% and serum clearance increased by just 17% in the epileptic patients compared to controls. These changes were not statistically significant. Likewise, mean lidocaine AUC decreased by approximately 11% and plasma clearance increased by 15% when a single 50 mg intravenous dose of lidocaine was administered following pretreatment with the potent CYP450 inducer rifampin (600 mg/day for six days) in ten healthy, nonsmoking male volunteers. Another pharmacokinetic study found that cigarette smoke, an inducer of CYP450 1A2, reduced the bioavailability of lidocaine when administered orally, but had only minor effects on lidocaine administered intravenously. When 4 smokers and 5 non-smokers received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smoker's systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. The clinical impact of smoking on lidocaine has not been studied, however, a loss of efficacy may occur.

References (4)
  1. Heinonen J, Takki S, Jarho L (1970) "Plasma lidocaine levels in patients treated with potential inducers of microsomal enzymes." Acta Anaesthesiol Scand, 14, p. 89-95
  2. Perucca E, Richens A (1979) "Reduction of oral bioavailability of lignocaine by induction of first pass metabolism in epileptic patients." Br J Clin Pharmacol, 8, p. 21-31
  3. Perucca E, Ruprah M, Richens A, Park BK, Betteridge DJ, Hedges AM (1981) "Effect of low-dose phenobarbitone on five indirect indices of hepatic microsomal enzyme induction and plasma lipoproteins in normal subjects." Br J Clin Pharmacol, 12, p. 592-6
  4. Reichel C, Skodra T, Nacke A, Spengler U, Sauerbruch T (1998) "The lignocaine metabolite (MEGX) liver function test and P-450 induction in humans." Br J Clin Pharmacol, 46, p. 535-9

Drug and food interactions

Moderate

lidocaine food

Applies to: adenosine / lidocaine / magnesium sulfate

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References (7)
  1. Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
  2. (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
  3. (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
  4. (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
  5. (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
  6. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
  7. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
Moderate

adenosine food

Applies to: adenosine / lidocaine / magnesium sulfate

ADJUST DOSING INTERVAL: Caffeine and other xanthine derivatives (e.g., theophylline) are nonspecific, competitive antagonists of adenosine receptors and may interfere with the hemodynamic effects of adenosine. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort.

MANAGEMENT: Clinicians should be aware that adenosine may be less effective in the presence of xanthine derivatives including caffeine. Patients should avoid consumption of caffeine-containing products for at least 12 hours, preferably 24 hours, prior to administration of adenosine for myocardial perfusion imaging.

References (6)
  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  3. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  4. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  5. "Multum Information Services, Inc. Expert Review Panel"
  6. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
Moderate

albendazole food

Applies to: albendazole

ADJUST DOSING INTERVAL: Food enhances the oral bioavailability of albendazole, which is rapidly converted by hepatocytes and intestinal mucosal cells into the active metabolite, albendazole sulfoxide (ABZSX), following absorption. The proposed mechanism is stimulation of gastric acid secretion, as the absorption of albendazole is thought to be pH-dependent. According to the product labeling, plasma concentrations of ABZSX are up to 5-fold higher on average when albendazole is administered with a fatty meal (fat content approximately 40 g) compared to administration in the fasted state. In one study of six healthy male volunteers, administration of a single 10 mg/kg oral dose of albendazole in combination with a high-fat meal (57 g fat, 1399 kcal) increased the mean ABZSX peak plasma concentration (Cmax) and systemic exposure (AUC) by 6.5- and 9.4-fold, respectively, and delayed the time to reach Cmax (Tmax) from 2.5 to 5.3 hours compared to administration in the fasted state with water. The elimination half-life was not affected.

MONITOR: Grapefruit juice may increase the oral bioavailability of albendazole, which is rapidly converted by hepatocytes and intestinal mucosal cells into the active metabolite, albendazole sulfoxide (ABZSX), following absorption. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In six healthy male volunteers, administration of a single 10 mg/kg oral dose of albendazole in combination with 250 mL of double-strength grapefruit juice increased the mean ABZSX peak plasma concentration (Cmax) and systemic exposure (AUC) by 3.2- and 3.1-fold, respectively, compared to administration with water. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: To ensure maximal oral absorption, albendazole should be taken with food. Grapefruit juice may also enhance the oral bioavailability of albendazole.

References (3)
  1. Awadzi K, Hero M, Opoku NO, Buttner DW, Coventry PA, Prime MA, Orme ML, Edwards G (1994) "The chemotherapy of onchocerciasis XVII. A clinical evaluation of albendazole in patients with onchocerciasis; effects of food and pretreatment with ivermectin on drug response and pharmacokinetics." Trop Med Parasitol, 45, p. 203-8
  2. (2001) "Product Information. Albenza (albendazole)." SmithKline Beecham
  3. Nagy J, Schipper HG, Koopmans RP, Butter JJ, van Boxtel CJ, Kager PA (2002) "Effect of grapefruit juice or cimetidine coadministration on albendazole bioavailability." Am J Trop Med Hyg, 66, p. 260-3
Moderate

adenosine food

Applies to: adenosine / lidocaine / magnesium sulfate

ADJUST DOSING INTERVAL: Methylxanthines (e.g., caffeine, theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the pharmacologic effects of adenosine and other adenosine receptor agonists such as dipyridamole and regadenoson. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort. Similarly, caffeine has been found to reduce the hemodynamic response to dipyridamole, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole. In a placebo-controlled study that assessed the effects of oral caffeine on regadenoson-induced increase in coronary flow reserve (CFR), healthy subjects who took caffeine 200 mg orally two hours prior to regadenoson administration exhibited a median CFR that was 92% that of subjects who took placebo. The study was done using positron emission tomography with radiolabeled water.

MANAGEMENT: Clinicians should be aware that adenosine and other adenosine receptor agonists may be less effective in the presence of methylxanthines. Methylxanthines including caffeine should be withheld for 12 to 24 hours (or five half-lives) prior to administration of adenosine receptor agonists for myocardial perfusion imaging. However, parenteral aminophylline should be readily available for treating severe or persistent adverse reactions to adenosine receptor agonists such as bronchospasm or chest pain.

References (9)
  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
  3. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  4. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  5. (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
  6. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  7. Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9
  8. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
  9. (2008) "Product Information. Lexiscan (regadenoson)." Astellas Pharma US, Inc
Moderate

lidocaine food

Applies to: adenosine / lidocaine / magnesium sulfate

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Minor

adenosine food

Applies to: adenosine / lidocaine / magnesium sulfate

Nicotine may enhance adenosine-associated tachycardia and chest pain. The mechanism is not known. No special precautions appear to be necessary.

References (2)
  1. Smits P, Eijsbouts A, Thien T (1989) "Nicotine enhances the circulatory effects of adenosine in human beings." Clin Pharmacol Ther, 46, p. 272-8
  2. Sylven C, Beermann B, Kaijser L, Jonzon B (1990) "Nicotine enhances angina pectoris-like chest pain and atriovenricular blockade provoked by intravenous bolus of adenosine in healthy volunteers." J Cardiovasc Pharmacol, 16, p. 962-5

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.