Skip to main content

Drug Interactions between Adenocard and emtricitabine / lopinavir / ritonavir / tenofovir

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

adenosine lopinavir

Applies to: Adenocard (adenosine) and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Adenosine has induced torsade de pointes arrhythmia in patients with preexisting long QT syndrome. Theoretically, coadministration of adenosine with agents that can prolong the QT interval may increase that risk as well. The mechanism has not been established, but may involve the depressant effect of adenosine on the sinoatrial and atrioventricular nodes. Rare cases of severe bradycardia have been reported during treatment with adenosine, which could favor the occurrence of torsade de pointes, especially in patients with prolonged QT intervals. Interestingly, no case of torsade de pointes has been reported when adenosine is given by continuous infusion.

MANAGEMENT: Adenosine should be used with caution in patients receiving drugs that may prolong the QT interval. Adenosine should be discontinued immediately if severe bradycardia occurs.

References

  1. Wesley RC Jr, Turnquest P (1992) "Torsades de pointe after intravenous adenosine in the presence of prolonged QT syndrome." Am Heart J, 123, p. 794-6
  2. Tachakra SS, Robinson S (1992) "Adenosine and cardiac arrhythmias." BMJ, 305, p. 422
  3. Celiker A, Tokel K, Cil E, Ozkutlu S, Ozme S (1994) "Adenosine induced torsades de pointes in a child with congenital long QT syndrome." Pacing Clin Electrophysiol, 17, p. 1814-7
  4. Michalets EL, Williams CR (2000) "Drug interactions with cisapride: clinical implications." Clin Pharmacokinet, 39, p. 49-75
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  6. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  7. Cerner Multum, Inc. "Australian Product Information."
  8. Harrington GR, Froelich EG (1993) "Adenosine-induced torsades de pointes." Chest, 103, p. 1299-1301
  9. Mallet ML (2004) "Proarrhythmic effects of adenosine: a review of the literature." Emerg Med J, 21, p. 408-10
  10. Drescher MJ, Mendelssohn R (2002) "Transient torsades de pointes after adenosine." Isr J Trauma Intensive Care Emerg Med, 2, p. 15-7
View all 10 references

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

adenosine food

Applies to: Adenocard (adenosine)

ADJUST DOSING INTERVAL: Caffeine and other xanthine derivatives (e.g., theophylline) are nonspecific, competitive antagonists of adenosine receptors and may interfere with the hemodynamic effects of adenosine. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort.

MANAGEMENT: Clinicians should be aware that adenosine may be less effective in the presence of xanthine derivatives including caffeine. Patients should avoid consumption of caffeine-containing products for at least 12 hours, preferably 24 hours, prior to administration of adenosine for myocardial perfusion imaging.

References

  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  3. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  4. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  5. "Multum Information Services, Inc. Expert Review Panel"
  6. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
View all 6 references

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

adenosine food

Applies to: Adenocard (adenosine)

ADJUST DOSING INTERVAL: Methylxanthines (e.g., caffeine, theophylline) are nonspecific, competitive antagonists of adenosine receptors. As such, they may interfere with the pharmacologic effects of adenosine and other adenosine receptor agonists such as dipyridamole and regadenoson. There have been case reports of patients receiving theophylline who required higher than normal dosages of adenosine for the treatment of paroxysmal supraventricular tachycardia. In studies of healthy volunteers, caffeine and theophylline have been shown to reduce the cardiovascular response to adenosine infusions (i.e., heart rate increases, vasodilation, blood pressure changes), and theophylline has also been shown to attenuate adenosine-induced respiratory effects and chest pain/discomfort. Similarly, caffeine has been found to reduce the hemodynamic response to dipyridamole, and both caffeine and theophylline have been reported to cause false-negative results in myocardial scintigraphy tests using dipyridamole. In a placebo-controlled study that assessed the effects of oral caffeine on regadenoson-induced increase in coronary flow reserve (CFR), healthy subjects who took caffeine 200 mg orally two hours prior to regadenoson administration exhibited a median CFR that was 92% that of subjects who took placebo. The study was done using positron emission tomography with radiolabeled water.

MANAGEMENT: Clinicians should be aware that adenosine and other adenosine receptor agonists may be less effective in the presence of methylxanthines. Methylxanthines including caffeine should be withheld for 12 to 24 hours (or five half-lives) prior to administration of adenosine receptor agonists for myocardial perfusion imaging. However, parenteral aminophylline should be readily available for treating severe or persistent adverse reactions to adenosine receptor agonists such as bronchospasm or chest pain.

References

  1. Conti CR (1991) "Adenosine: clinical pharmacology and applications." Clin Cardiol, 14, p. 91-3
  2. Smits P, Aengevaeren WR, Corstens FH, Thien T (1989) "Caffeine reduces dipyridamole-induced myocardial ischemia." J Nucl Med, 30, p. 1723-6
  3. Smits P, Schouten J, Thien T (1987) "Respiratory stimulant effects of adenosine in man after caffeine and enprofylline." Br J Clin Pharmacol, 24, p. 816-9
  4. Minton NA, Henry JA (1991) "Pharmacodynamic interactions between infused adenosine and oral theophylline." Hum Exp Toxicol, 10, p. 411-8
  5. (2002) "Product Information. Persantine (dipyridamole)." Boehringer-Ingelheim
  6. (2001) "Product Information. Adenocard (adenosine)." Fujisawa
  7. Ranhosky A, Kempthorne-Rawson J, the Intravenous Dipyridamole Thallium Imaging Study Group (1990) "The safety of intravenous dipyridamole thallium myocardial perfusion imaging." Circulation, 81, p. 1205-9
  8. (2001) "Product Information. Adenoscan (adenosine)." Fujisawa
  9. (2008) "Product Information. Lexiscan (regadenoson)." Astellas Pharma US, Inc
View all 9 references

Switch to consumer interaction data

Minor

tenofovir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences

Switch to consumer interaction data

Minor

adenosine food

Applies to: Adenocard (adenosine)

Nicotine may enhance adenosine-associated tachycardia and chest pain. The mechanism is not known. No special precautions appear to be necessary.

References

  1. Smits P, Eijsbouts A, Thien T (1989) "Nicotine enhances the circulatory effects of adenosine in human beings." Clin Pharmacol Ther, 46, p. 272-8
  2. Sylven C, Beermann B, Kaijser L, Jonzon B (1990) "Nicotine enhances angina pectoris-like chest pain and atriovenricular blockade provoked by intravenous bolus of adenosine in healthy volunteers." J Cardiovasc Pharmacol, 16, p. 962-5

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.