Skip to main content

Drug Interactions between Adalat CC and Quinaglute Dura-Tabs

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

quiNIDine NIFEdipine

Applies to: Quinaglute Dura-Tabs (quinidine) and Adalat CC (nifedipine)

MONITOR: Some dihydropyridine calcium channel blockers may increase or decrease serum quinidine concentrations by an unknown mechanism. Data have been conflicting. No changes in quinidine concentrations have also been reported. Increased quinidine levels have been associated with QTc prolongation. In addition, quinidine may increase calcium channel blocker levels.

MANAGEMENT: It is recommended that the effectiveness of quinidine and the calcium channel blocker be monitored and that serum quinidine levels be checked when clinically appropriate. Patients should be advised to promptly report any early symptoms of quinidine toxicity (e.g., nausea, vomiting, diarrhea, tinnitus, hearing loss, visual disturbances, dizziness, headache, and confusion) or excessive calcium channel blockade (e.g., hypotension and lower extremity edema).

References

  1. Farringer JA, Green JA, O'Rourke RA, et al. (1984) "Nifedipine-induced alterations in serum quinidine concentrations." Am Heart J, 108, p. 1570-2
  2. Schellens JH, Ghabrial H, van der Wart HH, et al. (1991) "Differential effects of quinidine on the disposition of nifedipine, sparteine, and mephenytoin in humans." Clin Pharmacol Ther, 50, p. 520-8
  3. Munger MA, Jarvis RC, Nair R, et al. (1989) "Elucidation of the nifedipine-quinidine interaction." Clin Pharmacol Ther, 45, p. 411-6
  4. Van Lith RM, Appleby DH (1985) "Quinidine-nifedipine interaction." Drug Intell Clin Pharm, 19, p. 829-31
  5. Green JA, Clementi WA, Porter C, Stigelman W (1983) "Nifedipine-quinidine interaction." Clin Pharm, 2, p. 461-5
  6. Bailey DG, Freeman DJ, Melendez LJ, Kreeft JH, Edgar B, Carruthers SG (1993) "Quinidine interaction with nifedipine and felodipine: pharmacokinetic and pharmacodynamic evaluation." Clin Pharmacol Ther, 53, p. 354-9
View all 6 references

Switch to consumer interaction data

Drug and food interactions

Moderate

quiNIDine food

Applies to: Quinaglute Dura-Tabs (quinidine)

GENERALLY AVOID: In a small, randomized, crossover study, the administration of quinidine with grapefruit juice (compared to water) to healthy volunteers significantly prolonged the time to reach peak plasma quinidine concentrations and decreased the plasma concentrations of its major metabolite, 3-hydroxyquinidine. These changes were associated pharmacodynamically with both a delay and a reduction in the maximal effect on QTc interval. The proposed mechanism is delay of gastric emptying as well as inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits.

MANAGEMENT: Given the drug's narrow therapeutic index, patients receiving quinidine therapy should avoid the consumption of grapefruits and grapefruit juice to prevent any undue fluctuations in plasma drug levels.

References

  1. Ace LN, Jaffe JM, Kunka RL (1983) "Effect of food and an antacid on quinidine bioavailability." Biopharm Drug Dispos, 4, p. 183-90
  2. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  3. Ha HR, Chen J, Leuenberger PM, Freiburghaus AU, Follah F (1995) "In vitro inhibition of midazolam and quinidine metabolism by flavonoids." Eur J Clin Pharmacol, 48, p. 367-71
  4. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
View all 4 references

Switch to consumer interaction data

Moderate

NIFEdipine food

Applies to: Adalat CC (nifedipine)

GENERALLY AVOID: The consumption of grapefruit juice may be associated with significantly increased plasma concentrations of some calcium channel blockers (CCBs) when they are administered orally. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. The interaction has been reported with the dihydropyridine CCBs (in roughly decreasing order of magnitude) felodipine, nisoldipine, nifedipine, and nimodipine, often with a high degree of interindividual variability. Grapefruit juice caused more than twofold increases in felodipine, nifedipine, and nisoldipine AUCs.

MANAGEMENT: The manufacturers of nifedipine and nisoldipine recommend avoiding grapefruit juice. Patients treated orally with other calcium channel blockers should be advised to avoid consumption of large amounts of grapefruits and grapefruit juice to prevent any undue fluctuations in serum drug levels. Increased effects on blood pressure may persist for up to 4 days after the consumption of grapefruit juice. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.

References

  1. Edgar B, Bailey D, Bergstrand R, Johnsson G, Regardh CG (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics of felodipine--and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. (2002) "Product Information. Plendil (felodipine)." Merck & Co., Inc
  3. (2002) "Product Information. Procardia (nifedipine)." Pfizer U.S. Pharmaceuticals
  4. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  5. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. (2001) "Product Information. Sular (nisoldipine)." Astra-Zeneca Pharmaceuticals
  10. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  11. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  12. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  13. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  14. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  15. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  16. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  17. Ho PC, Ghose K, Saville D, Wanwimolruk S (2000) "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol, 56, p. 693-8
  18. Fuhr U, Muller-Peltzer H, Kern R, et al. (2002) "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol, 58, p. 45-53
  19. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 19 references

Switch to consumer interaction data

Moderate

NIFEdipine food

Applies to: Adalat CC (nifedipine)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

NIFEdipine food

Applies to: Adalat CC (nifedipine)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.