Skip to main content

Drug Interactions between adagrasib and ephedrine / hydroxyzine / theophylline

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

hydrOXYzine adagrasib

Applies to: ephedrine / hydroxyzine / theophylline and adagrasib

GENERALLY AVOID: Adagrasib can cause concentration-dependent, prolongation of the QT interval. Coadministration with other agents that can prolong the QT interval may increase the risk of ventricular arrhythmias including torsade de pointes and sudden death. According to cardiac electrophysiology data provided by the manufacturer, the mean (90% CI) QTcF change from baseline was 18 ms at the mean steady-state maximum concentration (Cmax,ss) after administration of adagrasib 600 mg twice daily. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Coadministration of adagrasib with other drugs that can prolong the QT interval should generally be avoided. If concomitant use cannot be avoided, monitor electrocardiogram and electrolytes prior to starting adagrasib and during concomitant use. Withhold adagrasib if the QTc interval is greater than 500 ms or the change from baseline is greater than 60 ms until QTc interval is less than 481 ms or QT interval returns to baseline, then adagrasib may be resumed at the next lower dose level. Adagrasib should be permanently discontinued if torsade de pointes, polymorphic ventricular tachycardia or signs or symptoms of serious or life-threatening arrhythmia occur. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References (1)
  1. (2022) "Product Information. Krazati (adagrasib)." Mirati Therapeutics, Inc.
Moderate

theophylline adagrasib

Applies to: ephedrine / hydroxyzine / theophylline and adagrasib

MONITOR: Coadministration with adagrasib may increase the plasma concentrations of drugs that are metabolized by the CYP450 3A4, 2D6 or 2C9 enzymatic pathways or are substrates of the P-glycoprotein (P-gp) efflux membrane transporter. When adagrasib 400 mg twice daily (two-thirds the approved recommended dosage) was administered with midazolam (a sensitive CYP450 3A4 substrate) and dextromethorphan (a sensitive CYP450 2D6 substrate) in pharmacokinetic studies, midazolam peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 4.8- and 21-fold, respectively, while dextromethorphan Cmax and AUC increased by 1.9- and 1.8-fold, respectively. Adagrasib at the approved recommended dosage of 600 mg twice daily is predicted to increase midazolam Cmax by 3.1-fold and AUC by 31-fold; dextromethorphan Cmax by 1.7-fold and AUC by 2.4-fold; warfarin (a sensitive CYP450 2C9 substrate) Cmax by 1.1-fold and AUC by 2.9-fold; and digoxin (a P-gp substrate) Cmax by 1.9-fold and AUC by 1.5-fold. These results suggest that adagrasib is a potent inhibitor of CYP450 3A4 and may be a moderate inhibitor of CYP450 2D6 and 2C9 at the approved recommended dosage of 600 mg twice daily.

MANAGEMENT: Caution is advised when adagrasib is used concomitantly with drugs that are substrates of CYP450 3A4, CYP450 2D6, CYP450 2C9 and/or P-gp, particularly sensitive substrates or those with a narrow therapeutic range. Substitution for these medications is recommended when possible, or initiate with lower dosages and monitor patient clinical response/tolerance and titrate accordingly if coadministration is required. The prescribing information for concomitant medications should be consulted to assess the benefits versus risks of coadministration and for any dosage adjustments that may be required.

References (1)
  1. (2022) "Product Information. Krazati (adagrasib)." Mirati Therapeutics, Inc.
Minor

theophylline ePHEDrine

Applies to: ephedrine / hydroxyzine / theophylline and ephedrine / hydroxyzine / theophylline

Ephedrine-methylxanthine combinations are used for the treatment of asthma but the efficacy of the combination has been questioned. This combination may lead to increased xanthine side effects. The mechanism is unknown, but may be related to synergistic pharmacologic effects. Patients using this combination should be closely monitored for side effects such as nausea, vomiting, tachycardia, nervousness, or insomnia. If side effects are noted, the dosage of the xanthine may need to be decreased.

References (5)
  1. Weinberger M, Bronsky E, Bensch GW, Bock GN, Yecies JJ (1975) "Interaction of ephedrine and theophylline." Clin Pharmacol Ther, 17, p. 585-92
  2. Sims JA, doPico GA, Reed CE (1978) "Bronchodilating effect of oral theophylline-ephedrine combination." J Allergy Clin Immunol, 62, p. 15-21
  3. Tinkelman DG, Avner SE (1977) "Ephedrine therapy in asthmatic children. Clinical tolerance and absence of side effects." JAMA, 237, p. 553-7
  4. Weinberger MM, Brousky EA (1974) "Evaluation of oral bronchodilator therapy in asthmatic children: bronchodilators in asthmatic children." J Pediatr, 84, p. 421-7
  5. Badiei B, Faciane J, Sly M (1975) "Effect of throphylline, ephedrine and theri combination upon exercise-induced airway obstruction." Ann Allergy, 35, p. 32-6

Drug and food interactions

Major

adagrasib food

Applies to: adagrasib

ADJUST DOSING INTERVAL: Adagrasib can cause concentration-dependent, prolongation of the QT interval. Theoretically, coadministration with grapefruit juice before adagrasib has reached steady-state may significantly increase the plasma concentrations of adagrasib, which is primarily metabolized by CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported for the potent CYP450 3A4 inhibitor, itraconazole. In a clinical drug interaction study, adagrasib peak plasma concentration (Cmax) and systemic exposure (AUC) were increased by 2.4-fold and 4-fold, respectively following concomitant use of a single dose of adagrasib (200 mg) with itraconazole. No clinically significant differences in the pharmacokinetics of adagrasib at steady state were predicted when used concomitantly with itraconazole. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to adagrasib may increase the risk of adverse effects such as QT prolongation, diarrhea, fatigue, musculoskeletal pain, hepatotoxicity, and renal impairment.

Adagrasib pharmacokinetics were not significantly affected when administered with a high-fat meal.

MANAGEMENT: Although clinical data are lacking, it may be advisable to avoid the consumption of grapefruit or grapefruit juice until adagrasib concentrations have reached steady state (after approximately 8 days). Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope. Adagrasib may be administered with or without food.

References (1)
  1. (2022) "Product Information. Krazati (adagrasib)." Mirati Therapeutics, Inc.
Moderate

theophylline food

Applies to: ephedrine / hydroxyzine / theophylline

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

ADJUST DOSING INTERVAL: Administration of theophylline with continuous enteral nutrition may reduce the serum levels or the rate of absorption of theophylline. The mechanism has not been reported. In one case, theophylline levels decreased by 53% in a patient receiving continuous nasogastric tube feedings and occurred with both theophylline tablet and liquid formulations, but not with intravenous aminophylline.

MANAGEMENT: When administered to patients receiving continuous enteral nutrition , some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 1 hour after the dose of theophylline is given; rapid-release formulations are preferable, and theophylline levels should be monitored.

References (3)
  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  3. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
Moderate

hydrOXYzine food

Applies to: ephedrine / hydroxyzine / theophylline

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (4)
  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Moderate

theophylline food

Applies to: ephedrine / hydroxyzine / theophylline

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

References (2)
  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
Moderate

ePHEDrine food

Applies to: ephedrine / hydroxyzine / theophylline

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References (7)
  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Moderate

theophylline food

Applies to: ephedrine / hydroxyzine / theophylline

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.