Skip to main content

Drug Interactions between Acid Reducer-Cimetidine and Percocet 7.5/325

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

cimetidine oxyCODONE

Applies to: Acid Reducer-Cimetidine (cimetidine) and Percocet 7.5 / 325 (acetaminophen / oxycodone)

MONITOR CLOSELY: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of oxycodone, which is substantially metabolized by the isoenzyme. Increased oxycodone concentrations could conceivably increase or prolong adverse drug effects and may cause potentially fatal respiratory depression. According to some manufacturers, oxycodone systemic exposure (AUC) was, on average, approximately 2.4-times higher (range 1.5 to 3.4) during coadministration with itraconazole (200 mg orally for 5 days); 1.8 times higher (range 1.3 to 2.3) during coadministration with telithromycin (800 mg orally for 4 days); 3.6 times higher (range 2.7 to 5.6) during coadministration with voriconazole (200 mg twice daily for 4 days); and 1.7 times higher (range 1.1 - 2.1) during coadministration with grapefruit juice (200 mL three times daily for 5 days). Because oxycodone is also partially metabolized by CYP450 2D6, the magnitude of interaction may be even greater with concomitant use of a CYP450 3A4 and a CYP450 2D6 inhibitor, or concomitant use of a drug that is a dual inhibitor of both isoenzymes.

MANAGEMENT: Extreme caution is advised if oxycodone is prescribed with CYP450 3A4 inhibitors, particularly potent and moderate inhibitors (e.g., azole antifungal agents, protease inhibitors, aprepitant, ciprofloxacin, chloramphenicol, clarithromycin, cobicistat, conivaptan, crizotinib, delavirdine, diltiazem, dronedarone, erythromycin, fusidic acid, idelalisib, imatinib, mibefradil, mifepristone, nefazodone, netupitant, quinupristin-dalfopristin, telithromycin, verapamil) or weak inhibitors that also inhibit CYP450 2D6 (e.g., abiraterone, amiodarone, cimetidine, pazopanib, ranolazine). Some authorities advise that the oxycodone dose may need to be adjusted. A fatal overdose may occur following the initiation of a CYP450 3A4 inhibitor in patients already receiving oxycodone. Patients should be closely monitored for signs and symptoms of sedation, respiratory depression, and hypotension. Following discontinuation of the CYP450 3A4 inhibitor, patients should be monitored for reduced efficacy of oxycodone or development of withdrawal symptoms due to reduced plasma oxycodone levels.

References

  1. "Product Information. OxyContin (oxycodone)." Purdue Frederick Company PROD (2001):
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  3. Cerner Multum, Inc. "Australian Product Information." O 0

Switch to consumer interaction data

Minor

acetaminophen cimetidine

Applies to: Percocet 7.5 / 325 (acetaminophen / oxycodone) and Acid Reducer-Cimetidine (cimetidine)

Animal studies and some limited human studies have suggested that cimetidine may decrease the potential hepatotoxic effects of acetaminophen. The mechanism may be related to reductions in the rate at which reactive intermediate metabolites are formed. Not all studies have confirmed the occurrence of this interaction. No alterations in dosage are necessary.

References

  1. Vendemiale G, Altomare E, Trizio T, Leandro G, Manghisi OG, Albano O "Effect of acute and chronic cimetidine administration on acetaminophen metabolism in humans." Am J Gastroenterol 82 (1987): 1031-4
  2. Slattery JT, McRorie TI, Reynolds R, et al. "Lack of effect of cimetidine on acetaminophen disposition in humans." Clin Pharmacol Ther 46 (1989): 591-7
  3. Mitchell MC, Schenker S, Speeg KV "Selective inhibition of acetaminophen oxidation and toxicity by cimetidine and other histamine H2-receptor antagonists in vivo and in vitro in the rat and in man." J Clin Invest 73 (1984): 383-91
  4. Dalhoff K, Poulsen HE "Inhibition of acetaminophen oxidation by cimetidine and the effects on glutathione and activated sulphate synthesis rates." Pharmacol Toxicol 73 (1993): 215-8
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Major

oxyCODONE food

Applies to: Percocet 7.5 / 325 (acetaminophen / oxycodone)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including oxycodone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of oxycodone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of oxycodone by certain compounds present in grapefruit, resulting in decreased formation of metabolites noroxycodone and noroxymorphone and increased formation of oxymorphone due to a presumed shifting of oxycodone metabolism towards the CYP450 2D6-mediated route. In 12 healthy, nonsmoking volunteers, administration of a single 10 mg oral dose of oxycodone hydrochloride on day 4 of a grapefruit juice treatment phase (200 mL three times a day for 5 days) increased mean oxycodone peak plasma concentration (Cmax), systemic exposure (AUC) and half-life by 48%, 67% and 17% (from 3.5 to 4.1 hours), respectively, compared to administration during an equivalent water treatment phase. Grapefruit juice also decreased the metabolite-to-parent AUC ratio of noroxycodone by 44% and that of noroxymorphone by 45%. In addition, oxymorphone Cmax and AUC increased by 32% and 56%, but the metabolite-to-parent AUC ratio remained unchanged. Pharmacodynamic changes were modest and only self-reported performance was significantly impaired after grapefruit juice. Analgesic effects were not affected.

MANAGEMENT: Patients should not consume alcoholic beverages or use drug products that contain alcohol during treatment with oxycodone. Any history of alcohol or illicit drug use should be considered when prescribing oxycodone, and therapy initiated at a lower dosage if necessary. Patients should be closely monitored for signs and symptoms of sedation, respiratory depression, and hypotension. Due to a high degree of interpatient variability with respect to grapefruit juice interactions, patients treated with oxycodone may also want to avoid or limit the consumption of grapefruit and grapefruit juice.

References

  1. Nieminen TH, Hagelberg NM, Saari TI, et al. "Grapefruit juice enhances the exposure to oral oxycodone." Basic Clin Pharmacol Toxicol 107 (2010): 782-8

Switch to consumer interaction data

Major

acetaminophen food

Applies to: Percocet 7.5 / 325 (acetaminophen / oxycodone)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Minor

cimetidine food

Applies to: Acid Reducer-Cimetidine (cimetidine)

Concurrent use of cimetidine and ethanol may result in increased ethanol concentrations. The mechanism appears to be due to inhibition of gastric alcohol dehydrogenase by cimetidine, leading to increased bioavailability of the alcohol and inhibition of hepatic metabolism of alcohol. The clinical significance of this interaction is limited. More importantly, patients requiring cimetidine for gastrointestinal disease should be counseled to avoid alcohol to prevent worsening of their disease. The other H-2 receptor antagonists appear to have minimal effects on the concentrations of alcohol.

References

  1. Feely J, Wood AJ "Effects of cimetidine on the elimination and actions of ethanol." JAMA 247 (1982): 2819-21
  2. Hansten PD "Effects of H2-receptor antagonists on blood alcohol levels." JAMA 267 (1992): 2469

Switch to consumer interaction data

Minor

cimetidine food

Applies to: Acid Reducer-Cimetidine (cimetidine)

Caffeine effects may be increased in patients also taking cimetidine. The mechanism may be due to decreased caffeine metabolism induced by cimetidine. Although adequate clinical data are lacking, a reduction in dose or elimination of caffeine may be needed if excess CNS stimulation is observed.

References

  1. "Product Information. Tagamet (cimetidine)." SmithKline Beecham PROD (2001):
  2. Broughton LJ, Rodgers HJ "Decreased systenuc clearance of caffeine due to cimetidine." Br J Clin Pharmacol 12 (1981): 155-9

Switch to consumer interaction data

Minor

cimetidine food

Applies to: Acid Reducer-Cimetidine (cimetidine)

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References

  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol 38 (1990): 165-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.